14 research outputs found

    Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe

    Get PDF
    The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We implemented a strategy for the visualization of morphological changes of dendritic spines over tens of minutes at a lateral resolution of 25 to 65 nm. We have generated a low-affinity photoconvertible probe, capable of reversibly binding to actin and thus allowing long-term photoactivated localization microscopy of the spine cytoskeleton. Using this approach, we resolve structural parameters of spines and record their long-term dynamics at a temporal resolution below one minute. Furthermore, we have determined changes in the spine morphology in response to pharmacologically induced synaptic activity and quantified the actin redistribution underlying these changes. By combining PALM imaging with quantum dot tracking, we could also simultaneously visualize the cytoskeleton and the spine membrane, allowing us to record complementary information on the morphological changes of the spines at super-resolution

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Get PDF
    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range

    Measurement of the tt¯ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at √s = 13 TeV

    Get PDF
    A measurement of the top quark–antiquark pair production cross section σtt¯ in proton–proton collisions at a centre-of-mass energy of 13TeV is presented. The data correspond to an integrated luminosity of 35.9fb−1, recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events (e ± μ ∓, μ+μ−, e+e−) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of mMCt=172.5GeV the fit yields a measured cross section σtt¯=803±2(stat)±25(syst)±20(lumi)pb, in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the POWHEG simulation is performed. The measured value of mMCt=172.33±0.14(stat)+0.66−0.72(syst)GeV is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions

    Gewässerbelastungen durch biogene Stoffe und Organismen

    No full text

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    No full text

    Measurement of the Λ hyperon lifetime

    No full text
    A new, more precise measurement of the Λ hyperon lifetime is performed using a large data sample of Pb-Pb collisions at sNN=5.02 TeV with ALICE. The Λ and Λ¯ hyperons are reconstructed at midrapidity using their two-body weak decay channel Λ→p+π- and Λ¯→p¯+π+. The measured value of the Λ lifetime is τΛ=[261.07±0.37(stat.)±0.72(syst.)] ps. The relative difference between the lifetime of Λ and Λ¯, which represents an important test of CPT invariance in the strangeness sector, is also measured. The obtained value (τΛ-τΛ¯)/τΛ=0.0013±0.0028(stat.)±0.0021(syst.) is consistent with zero within the uncertainties. Both measurements of the Λ hyperon lifetime and of the relative difference between τΛ and τΛ¯ are in agreement with the corresponding world averages of the Particle Data Group and about a factor of three more precise

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    No full text
    Abstract Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s \sqrt{s} s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (pT) of 0.2 GeV/c and up to pT = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the pT range 0.5 &lt; pT&lt; 26 GeV/c at sNN \sqrt{s_{\textrm{NN}}} s NN = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong pT dependence is observed in pp collisions, where the yield of high-pT electrons increases faster as a function of multiplicity than the one of low-pT electrons. The measurement in p-Pb collisions shows no pT dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.</jats:p

    System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

    No full text
    corecore