95 research outputs found

    The Source of Maser Emission W33C (G12.8-0.2)

    Full text link
    Results of observations of the maser sources toward the W33C region (G12.8-0.2) carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in the 1.35-cm H2O line and on the Large radio telescope in Nancay (France) in the main (1665 and 1667 MHz) and satellite (1612 and 1720 MHz) OH lines are reported. Multiple, strongly variable short-lived H2O emission features were detected in a broad interval of radial velocities, from -7 to 55 km/s. OH maser emission in the 1667-MHz line was discovered in a velocity range of 35-41 km/s. Stokes parameters of maser emission in the main OH lines 1665 and 1667 MHz were measured. Zeeman splitting was detected in the 1665-MHz line at 33.4 and 39.4 km/s and in the 1667 MHz line only at 39.4 km/s. The magnetic field intensity was estimated. A appreciable variability of Zeeman splitting components was observed at 39 and 39.8 km/s in both main lines. The extended spectrum and fast variability of the H2O maser emission together with the variability of the Zeeman splitting components in the main OH lines can be due to the composite clumpy structure of the molecular cloud and to the presence in it of large-scale rotation and bipolar outflow as well as of turbulent motions of material.Comment: 7 pages, 2 tables, 8 figures, accepted by Astronomicheskii Zhurnal (Astronomy Reports

    Multiple Sources toward the High-mass Young Star S140 IRS1

    Full text link
    S140 IRS1 is a remarkable source where the radio source at the center of the main bipolar molecular outflow in the region is elongated perpendicular to the axis of the outflow, an orientation opposite to that expected if the radio source is a thermal jet exciting the outflow. We present results of 1.3 cm continuum and H2O maser emission observations made with the VLA in its A configuration toward this region. In addition, we also present results of continuum observations at 7 mm and re-analyse observations at 2, 3.5 and 6 cm (previously published). IRS 1A is detected at all wavelengths, showing an elongated structure. Three water maser spots are detected along the major axis of the radio source IRS 1A. We have also detected a new continuum source at 3.5 cm (IRS 1C) located ~0.6'' northeast of IRS 1A. The presence of these two YSOs (IRS 1A and 1C) could explain the existence of the two bipolar molecular outflows observed in the region. In addition, we have also detected three continuum clumps (IRS 1B, 1D and 1E) located along the major axis of IRS 1A. We discuss two possible models to explain the nature of IRS 1A: a thermal jet and an equatorial wind.Comment: 17 pages, 4 figures, to be published in A

    The brightest OH maser in the sky: a flare of emission in W75 N

    Full text link
    A flare of maser radio emission in the OH-line 1665 MHz has been discovered in the star forming region W75 N in 2003, with the flux density of about 1000 Jy. At the time it was the strongest OH maser detected during the whole history of observations since the discovery of cosmic masers in 1965. The flare emission is linearly polarized with a degree of polarization near 100%. A weaker flare with a flux of 145 Jy was observed in this source in 2000 - 2001, which was probably a precursor of the powerful flare. Intensity of two other spectral features has decreased after beginning of the flare. Such variation of the intensity of maser condensation emission (increasing of one and decreasing of the other) can be explained by passing of the magneto hydrodynamic shock across regions of enhanced gas concentration.Comment: 9 pages with 2 figures, accepted for publication in Astronomy Letter

    Asymmetry in the Spectrum of High-Velocity H2O Maser Emission Features in Active Galactic Nuclei

    Full text link
    We suggest a mechanism for the amplification of high-velocity water-vapor maser emission features from the central regions of active galactic nuclei. The model of an emitting accretion disk is considered. The high-velocity emission features originate in the right and left wings of the Keplerian disk. The hyperfine splitting of the signal levels leads to an asymmetry in the spectral profile of the water vapor maser line at a frequency of 22.235 GHz. We show that the gain profile asymmetry must lead to an enhanced brightness of the blueshifted high-velocity emission features compared to the redshifted ones. Such a situation is observed in the source UGC 3789.Comment: 11 pages 3 figure

    The 3-D kinematics of water masers around the semiregular variable RT Virginis

    Get PDF
    We report observations of water masers around the semiregular variable RT Virginis (RT Vir), which have been made with the Very Long Baseline Array (VLBA) of the National Radio Astronomy Observatory (NRAO) at five epochs, each separated by three weeks of time. We detected about 60 maser features at each epoch. Overall, 61 features, detected at least twice, were tracked by their radial velocities and proper motions. The 3-D maser kinematics exhibited a circumstellar envelope that is expanding roughly spherically with a velocity of about 8 km/s. Asymmetries in both the spatial and velocity distributions of the maser features were found in the envelope, but less significant than that found in other semiregular variables. Systematic radial-velocity drifts of individual maser features were found with amplitudes of <= 2 km/s/yr. For one maser feature, we found a quadratic position shift with time along a straight line on the sky. This apparent motion indicates an acceleration with an amplitude of 33 km/s/yr, implying the passage of a shock wave driven by the stellar pulsation of RT Vir. The acceleration motion is likely seen only on the sky plane because of a large velocity gradient formed in the accelerating maser region. We estimated the distance to RT Vir to be about 220 pc on the basis of both the statistical parallax and model-fitting methods for the maser kinematics.Comment: 18 pages, 8 figures. Accepted to appear in the Astrophysical Journa

    Evolved star water maser cloud size determined by star size

    Full text link
    Cool, evolved stars undergo copious mass loss but the details of how the matter is returned to the ISM are still under debate. We investigated the structure and evolution of the wind at 5 to 50 stellar radii from Asymptotic Giant Branch and Red Supergiant stars. 22-GHz water masers around seven evolved stars were imaged using MERLIN, at sub-AU resolution. Each source was observed at between 2 and 7 epochs (several stellar periods). We compared our results with long-term Pushchino single dish monitoring. The 22-GHz emission is located in ~spherical, thick, unevenly filled shells. The outflow velocity doubles between the inner and outer shell limits. Water maser clumps could be matched at successive epochs separated by <2 years for AGB stars, or at least 5 years for RSG. This is much shorter than the decades taken for the wind to cross the maser shell, and comparison with spectral monitoring shows that some features fade and reappear. In 5 sources, most of the matched features brighten or dim in concert from one epoch to the next. One cloud in W Hya was caught in the act of passing in front of a background cloud leading to 50-fold, transient amplification. The masing clouds are 1-2 orders of magnitude denser than the wind average and contain a substantial fraction of the mass loss in this region, with a filling factor <1%. The RSG clouds are ~10x bigger than those round the AGB stars. Proper motions are dominated by expansion, with no systematic rotation. The maser clouds survive for decades (the shell crossing time) but the masers are not always beamed in our direction. Radiative effects cause changes in flux density throughout the maser shells on short timescales. Cloud size is proportional to parent star size; clouds have a similar radius to the star in the 22-GHz maser shell. Stellar properties such as convection cells must determine the clumping scale.Comment: Accepted by A&A 2012 July 10 Main text 29 pages, 62 figures Appendix 44 pages, 23 figure

    Observations of Massive Star Forming Regions with Water Masers: Mid-Infrared Imaging

    Full text link
    We present here a mid-infrared imaging survey of 26 sites of water maser emission. Observations were obtained at the InfraRed Telescope Facility 3-m telescope with the University of Florida mid-infrared imager/spectrometer OSCIR, and the JPL mid-infrared camera MIRLIN. The main purpose of the survey was to explore the relationship between water masers and the massive star formation process. It is generally believed that water masers predominantly trace outflows and embedded massive stellar objects, but may also exist in circumstellar disks around young stars. We investigate each of these possibilities in light of our mid-infrared imaging. We find that mid-infrared emission seems to be more closely associated with water and OH maser emission than cm radio continuum emission from UC HII regions. We also find from the sample of sources in our survey that, like groups of methanol masers, both water and OH masers have a proclivity for grouping into linear or elongated distributions. We conclude that the vast majority of linearly distributed masers are not tracing circumstellar disks, but outflows and shocks instead.Comment: 49 pages; 23 figures; To appear in February 2005 ApJS; To download a version with better quality figures, go to http://www.ctio.noao.edu/~debuizer

    Investigation of the H

    No full text
    Observations and analysis of the H2O maser emission source, associated with the star-forming region G43.8-0.1, are presented. The observations were carried out on the RT-22 radio telescope of the Pushchino Radio Astronomy Observatory (Russia) in 1994–1998. A new flare of emission of a group of features at radial velocities from 37.5 to 39.5 km s-1, which took place in 1996–1998, was observed. For the 38.2 km s-1 feature, a dependence between flux density and linewidth (ln⁥F∝ΔV−2\ln F\propto\Delta V^{-2}) was derived; it indicates that the maser is unsaturated or partly saturated.
The evolution of emission of the 42.2 km s-1 maser condensation is traced at a timespan of 16 years. The flux density was plotted versus linewidth for this feature (in the ln⁥F, ΔV−2\ln F,\,\Delta V^{-2} coordinates). This dependence contains two branches, largely shifted with respect to each other. The transition from one branch to the other took 2.5 years, while the linewidth was fluctuating. Possible causes of existence of the two branches in the maser emission evolution are discussed.
An analysis of the entire data set for 1976–1998 has shown that the time interval between the minima of integral flux in G43.8-0.1 was 18 ± 1  yr. This figure can be taken as the period of the H2O maser activity in G43.8-0.1.
    • 

    corecore