35 research outputs found

    A framework for habitat monitoring and climate change modelling: construction and validation of the Environmental Stratification of Estonia

    Get PDF
    Environmental stratifications provide the framework for efficient surveillance and monitoring of biodiversity and ecological resources, as well as modelling exercises. An obstacle for agricultural landscape monitoring in Estonia has been the lack of a framework for the objective selection of monitoring sites. This paper describes the construction and testing of the Environmental Stratification of Estonia (ESE). Principal components analysis was used to select the variables that capture the most amount of variation. Seven climate variables and topography were selected and subsequently subjected to the ISODATA clustering routine in order to produce relatively homogeneous environmental strata. The ESE contains eight strata, which have been described in terms of soil, land cover and climatic parameters. In order to assess the reliability of the stratification procedure for the selection of monitoring sites, the ESE was compared with the previous map of Landscape Regions of Estonia and correlated with five environmental data sets. All correlations were significant. The stratification has therefore already been used to extend the current series of samples in agricultural landscapes into a more statistically robust series of monitoring sites. The potential for applying climate change scenarios to assess the shifts in the strata and associated ecological impacts is also examined.</p

    Analysis of copy number variation at DMBT1 and age-related macular degeneration

    Get PDF
    BACKGROUND: DMBT1 is a gene that shows extensive copy number variation (CNV) that alters the number of bacteria-binding domains in the protein and has been shown to activate the complement pathway. It lies next to the ARMS2/HTRA1 genes in a region of chromosome 10q26, where single nucleotide variants have been strongly associated with age-related macular degeneration (AMD), the commonest cause of blindness in Western populations. Complement activation is thought to be a key factor in the pathogenesis of this condition. We sought to investigate whether DMBT1 CNV plays any role in the susceptibility to AMD. METHODS: We analysed long-range linkage disequilibrium of DMBT1 CNV1 and CNV2 with flanking single nucleotide polymorphisms (SNPs) using our previously published CNV and HapMap Phase 3 SNP data in the CEPH Europeans from Utah (CEU). We then typed a large cohort of 860 AMD patients and 419 examined age-matched controls for copy number at DMBT1 CNV1 and CNV2 and combined these data with copy numbers from a further 480 unexamined controls. RESULTS: We found weak linkage disequilibrium between DMBT1 CNV1 and CNV2 with the SNPs rs1474526 and rs714816 in the HTRA1/ARMS2 region. By directly analysing copy number variation, we found no evidence of association of CNV1 or CNV2 with AMD. CONCLUSIONS: We have shown that copy number variation at DMBT1 does not affect risk of developing age-related macular degeneration and can therefore be ruled out from future studies investigating the association of structural variation at 10q26 with AMD

    Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae

    Get PDF
    Alginate, a copolymer of D-mannuronic acid and L-guluronic acid, is produced by a variety of pseudomonads, including Pseudomonas syringae. Alginate biosynthesis has been most extensively studied in P. aeruginosa, and a number of structural and regulatory genes from this species have been cloned and characterized. In the present study, an alginate-defective (Alg2) mutant of P. syringae pv. syringae FF5 was shown to contain a Tn5 insertion in algL, a gene encoding alginate lyase. A cosmid clone designated pSK2 restored alginate production to the algL mutant and was shown to contain homologs of algD, alg8, alg44, algG, algX (alg60), algL, algF, and algA. The order and arrangement of the structural gene cluster were virtually identical to those previously described for P. aeruginosa. Complementation analyses, however, indicated that the structural gene clusters in P. aeruginosa and P. syringae were not functionally interchangeable when expressed from their native promoters. A region upstream of the algD gene in P. syringae pv. syringae was shown to activate the transcription of a promoterless glucuronidase (uidA) gene and indicated that transcription initiated upstream of algD as described for P. aeruginosa. Transcription of the algD promoter from P. syringae FF5 was significantly higher at 32°C than at 18 or 26°C and was stimulated when copper sulfate or sodium chloride was added to the medium. Alginate gene expression was also stimulated by the addition of the nonionic solute sorbitol, indicating that osmolarity is a signal for algD expression in P. syringae FF5.Peer reviewedPlant Patholog

    A variant form of the human Deleted in Malignant Brain Tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3)

    Get PDF
    The protein deleted in malignant brain tumors (DMBT1) and the trefoil factor (TFF) proteins have all been proposed to have roles in epithelial cell growth and cell differentiation and shown to be up regulated in inflammatory bowel diseases. A panel of monoclonal antibodies was raised against human DMBT1(gp340). Analysis of lung washings and colon tissue extracts by Western blotting in the unreduced state, two antibodies (Hyb213-1 and Hyb213-6) reacted with a double band of 290 kDa in lung lavage. Hyb213-6, in addition, reacted against a double band of 270 kDa in colon extract while Hyb213-1 showed no reaction. Hyb213-6 showed strong cytoplasmic staining in epithelial cells of both the small and large intestine whereas no staining was seen with Hyb213-1. The number of DMBT1(gp340) positive epithelial cells, stained with Hyb213-6, was significantly up regulated in inflammatory colon tissue sections from patients with ulcerative colitis (p&lt;0.0001) and Crohn's disease (p?=?0.006) compared to normal colon tissue. Immunohistochemical analysis of trefoil factor TFF1, 2 and 3 showed that TFF1 and 3 localized to goblet cells in both normal colon tissue and in tissue from patients with ulcerative colitis or Crohn's disease. No staining for TFF2 was seen in goblet cells in normal colon tissue whereas the majority of tissue sections in ulcerative colitis and Crohn's disease showed sparse and scattered TFF2 positive goblet cells. DMBT1 and TFF proteins did therefore not co-localize in the same cells but localized in adjacent cells in the colon. The interaction between DMBT1(gp340) and trefoil TFFs proteins was investigated using an ELISA assay. DMBT1(gp340) bound to solid-phase bound recombinant dimeric TFF3 in a calcium dependent manner (p&lt;0.0001) but did not bind to recombinant forms of monomeric TFF3, TFF2 or glycosylated TFF2. This implies a role for DMBT1 and TFF3 together in inflammatory bowel disease

    Superbasicity of a Bis-guanidino Compound with a Flexible Linker: A Theoretical and Experimental Study

    No full text
    The bis-guanidino compound H2C{hpp}(2) (I; hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) has been converted to the monocation [I-H](+) and isolated as the chloride and tetraphenylborate salts. Solution-state spectroscopic data do not differentiate the protonated guanidinium from the neutral guanidino group but suggest intramolecular "-N-H center dot center dot center dot N=" hydrogen bonding to form an eight-membered C3N4H heterocycle. Solid-state CPMAS N-15 NMR spectroscopy confirms protonation at one of the imine nitrogens, although line broadening is consistent with solid-state proton transfer between guanidine functionalities. X-ray diffraction data have been recorded over the temperature range 50-273 K. Examination of the carbon-nitrogen bond lengths suggests a degree of "partial protonation" of the neutral guanidino group at higher temperatures, with greater localization of the proton at one nitrogen position as the temperature is lowered. Difference electron density maps generated from high-resolution X-ray diffraction studies at 110 K give the first direct experimental evidence for proton transfer in a poly(guanidino) system. Computational analysis of I and its conjugate acid [I-H](+) indicate strong cationic resonance stabilization of the guanidinium group, with the nonprotonated group also stabilized, albeit to a lesser extent. The maximum barrier to proton transfer calculated using the Boese-Martin for kinetics method was 2.8 kcal mol(-1), with hydrogen-bond compression evident in the transition state; addition of zero-point vibrational energy values leads to the conclusion that the proton transfer is barrierless, implying that the proton shuttles freely between the two nitrogen atoms. Calculations determining the gas-phase proton affinity and the pK(a) in acetonitrile both indicate that compound I should behave as a superbase. This has been confirmed by spectrophotometric titrations in MeCN using polyphosphazene references, which give an average pK(a) of 28.98 +/- 0.05. Triadic analysis indicates that the dominant term causing the high basicity is the relaxation energy
    corecore