1,952 research outputs found

    Endoscopic optical coherence tomography with a flexible fiber bundle

    Full text link
    We demonstrate in vivo endoscopic optical coherence tomography (OCT) imaging in the forward direction using a flexible fiber bundle. In comparison to current conventional forward looking probe schemes, our approach simplifies the endoscope design by avoiding the integration of any beam steering components in the distal probe end due to 2D scanning of a focused light beam over the proximal fiber bundle surface. We describe the challenges that arise when OCT imaging with a fiber bundle is performed, such as multimoding or cross-coupling. The performance of different fiber bundles with varying parameters such as numerical aperture, core size and core structure was consequently compared and artifacts that degrade the image quality were described in detail. Based on our findings, we propose an optimal fiber bundle design for endoscopic OCT imaging

    Multimodal Optical Medical Imaging Concepts Based on Optical Coherence Tomography

    Get PDF
    Optical medical imaging techniques in general exhibit outstanding resolution and molecule-specific contrast. They come however with a limited penetration in depth and small field of view. Multimodal concepts help to combine complementary strengths of different imaging technologies. The present article reviews the advantages of optical multimodal imaging concepts using optical coherence tomography (OCT) as core technology. In particular we first discuss polarization sensitive OCT, Doppler OCT and OCT angiography, OCT elastography, and spectroscopic OCT as intramodal concepts. To highlight intermodal imaging concepts, we then chose the combination of OCT with photoacoustics, and with non-linear optical microscopy. The selected multimodal concepts and their particular complementary strengths and applications are discussed in detail. The article concludes with notes on standardization of OCT imaging and multimodal extensions

    Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography

    Get PDF
    AN APPEAL FROM A JUDGMENT AND DECREE OF DIVORCE OF THE THIRD JUDICIAL DISTRICT, SALT LAKE COUNTY, UTAH THE HONORABLE JOHN A. ROKICH JUDGE PRESIDING

    Glasgow Coma Scale score at intensive care unit discharge predicts the 1-year outcome of patients with severe traumatic brain injury

    Get PDF
    OBJECTIVE: To analyse the association between the Glasgow Coma Scale (GCS) score at intensive care unit (ICU) discharge and the 1-year outcome of patients with severe traumatic brain injury (TBI). DESIGN: Retrospective analysis of prospectively collected observational data. PATIENTS: Between 01/2001 and 12/2005, 13 European centres enrolled 1,172 patients with severe TBI. Data on accident, treatment and outcomes were collected. According to the GCS score at ICU discharge, survivors were classified into four groups: GCS scores 3–6, 7–9, 10–12 and 13–15. Using the Glasgow Outcome Scale (GOS), 1-year outcomes were classified as “favourable” (scores 5, 4) or “unfavourable” (scores <4). Factors that may have contributed to outcomes were compared between groups and for favourable versus unfavourable outcomes within each group. MAIN RESULTS: Of the 538 patients analysed, 308 (57 %) had GCS scores 13–15, 101 (19 %) had scores 10–12, 46 (9 %) had scores 7–9 and 83 (15 %) had scores 3–6 at ICU discharge. Factors significantly associated with these GCS scores included age, severity of trauma, neurological status (GCS, pupils) at admission and patency of the basal cisterns on the first computed tomography (CT) scan. Favourable outcome was achieved in 74 % of all patients; the rates were significantly different between GCS groups (93, 83, 37 and 10 %, respectively). Within each of the GCS groups, significant differences regarding age and trauma severity were found between patients with favourable versus unfavourable outcomes; neurological status at admission and CT findings were not relevant. CONCLUSION: The GCS score at ICU discharge is a good predictor of 1-year outcome. Patients with a GCS score <10 at ICU discharge have a poor chance of favourable outcome

    In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy

    Get PDF
    Aims/hypothesis: Structural and functional imaging of the islets of Langerhans and the insulin-secreting beta cells represents a significant challenge and a long-lasting objective in diabetes research. In vivo microscopy offers a valuable insight into beta cell function but has severe limitations regarding sample labelling, imaging speed and depth, and was primarily performed on isolated islets lacking native innervations and vascularisation. This article introduces extended-focus optical coherence microscopy (xfOCM) to image murine pancreatic islets in their natural environment in situ, i.e. in vivo and in a label-free condition. Methods: Ex vivo measurements on excised pancreases were performed and validated by standard immunohistochemistry to investigate the structures that can be observed with xfOCM. The influence of streptozotocin on the signature of the islets was investigated in a second step. Finally, xfOCM was applied to make measurements of the murine pancreas in situ and in vivo. Results: xfOCM circumvents the fundamental physical limit that trades lateral resolution for depth of field, and achieves fast volumetric imaging with high resolution in all three dimensions. It allows label-free visualisation of pancreatic lobules, ducts, blood vessels and individual islets of Langerhans ex vivo and in vivo, and detects streptozotocin-induced islet destruction. Conclusions/interpretation: Our results demonstrate the potential value of xfOCM in high-resolution in vivo studies to assess islet structure and function in animal models of diabetes, aiming towards its use in longitudinal studies of diabetes progression and islet transplant

    How to find an attractive solution to the liar paradox

    Get PDF
    The general thesis of this paper is that metasemantic theories can play a central role in determining the correct solution to the liar paradox. I argue for the thesis by providing a specific example. I show how Lewis’s reference-magnetic metasemantic theory may decide between two of the most influential solutions to the liar paradox: Kripke’s minimal fixed point theory of truth and Gupta and Belnap’s revision theory of truth. In particular, I suggest that Lewis’s metasemantic theory favours Kripke’s solution to the paradox over Gupta and Belnap’s. I then sketch how other standard criteria for assessing solutions to the liar paradox, such as whether a solution faces a so-called revenge paradox, fit into this picture. While the discussion of the specific example is itself important, the underlying lesson is that we have an unused strategy for resolving one of the hardest problems in philosophy

    Coherent transfer functions and extended depth of field

    Get PDF
    To preserve the speed advantage of Fourier Domain detection in Optical Coherence Microscopy (OCM), extended depth of field is needed. With a narrow probing volume that extends over a long axial range, tissue could be measured in vivo and at cellular resolution. To assess and improve the DOF and the lateral resolution, we analyzed the coherent transfer function (CTF) of OCM. Both the illumination and detection optics contribute equally to the overall imaging performance. In the Fourier domain detection, each pixel of the spectrometer has its specific CTF, sampling a different region of the object’s spatial frequency spectrum. For classical optics and increasing numerical apertures these regions start to overlap and bend, which limits the depth of field. Annular apertures, created with Bessel-like beams produced by axicon lenses or phase filters, circumvent these detrimental effects, but introduce strong side lobes. Decoupling the detection and the illumination apertures is needed to provide the flexibility in engineering a CTF that optimizes the lateral resolution and the DOF at the same time all while reducing these side lobes. We evaluated different combinations of Gaussian and Bessel-like illumination and detection optics, both theoretically and experimentally. Using Bessel-like beams as well in the illumination as in the detection paths, but with annular apertures of different lobe radii, we obtained a lateral resolution of 1.3 μm and an extended depth of field of more than 300 μm, which was completely decoupled from the numerical aperture and scalable to high lateral resolution

    Fast focus field calculations

    Get PDF
    We present a fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field on the objective. We present two case studies by calculating the focus fields of a 40Ă—1.20 NA water immersion objective for different amplitude distributions of the input field, and a 100Ă—1.45 NA oil immersion objective containing evanescent field contributions for both linearly and radially polarized input fields

    In vivo functional retinal optical coherence tomography

    Full text link
    • …
    corecore