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Optical medical imaging techniques in general exhibit outstanding resolution and

molecule-specific contrast. They come however with a limited penetration in depth and

small field of view. Multimodal concepts help to combine complementary strengths of

different imaging technologies. The present article reviews the advantages of optical

multimodal imaging concepts using optical coherence tomography (OCT) as core

technology. In particular we first discuss polarization sensitive OCT, Doppler OCT and

OCT angiography, OCT elastography, and spectroscopic OCT as intramodal concepts.

To highlight intermodal imaging concepts, we then chose the combination of OCT

with photoacoustics, and with non-linear optical microscopy. The selected multimodal

concepts and their particular complementary strengths and applications are discussed

in detail. The article concludes with notes on standardization of OCT imaging and

multimodal extensions.

Keywords: multimodal imaging, virtual biopsy, optical coherence tomography, Doppler OCT, OCT angiography,

polarization sensitive OCT, photo-acoustics, non-linear microscopy

INTRODUCTION

Optical imaging has always been the most intuitive modality in medical diagnostics, starting from
the most basic standard visual inspection of the patients’ general appearance, to the pathologic
assessment of tissue using microscopy. Modern imaging technologies advance the capabilities
of optics to provide not only morphologic information, but also functional physiologic, as well
as biochemical metabolic information. “Seeing is believing” has certainly been an important
paradigm, although especially in medical diagnostic imaging, the uptake of new technologies
has always been very reluctant. Every imaging technology has its specific contrast mechanism
leading to images that need careful interpretation by correlation with true anatomy. While novel
mechanisms may often provide new insights into structure and function, they also come with their
specific artifacts that need to be understood. Those are related with the handling of the imaging
probes, sample preparation, patient motion, etc. Therefore, in daily clinical practice, histology
is still the workhorse for medical diagnostics, and serves as golden standard for novel imaging
modalities. Unfortunately, the preparation of histologic samples is a very tedious, time costly, and
inherently destructive process: starting from the in some cases unguided tissue extraction, to the
fixation of the tissue, further processing by dehydration, clearing, and embedding, to the final
sectioning and staining. The pathohistologic examination is finally done under a microscope in the
office of the pathologists. This workflow becomes particularly critical during intraoperative tumor
extraction, when tumor borders need to be assessed precisely. Slightly faster tissue examination
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is then achieved by cryo-fixation of biopsies, but the examination
is still done offline outside the surgical room. It is therefore
impossible to assess the full tumor margin. As a result, head
and neck surgery sees inadequate margins 85% of the time. The
same holds for breast cancer surgery, with reported 20–70% of
cases [1]. Inadequate assessment of tumor borders results in
additional surgery due to tumor recurrence with in most cases
strong reduction of quality of life of the patients. Obviously there
is a strong need for methods that allow for virtual optical or
digital biopsy by in-situ quasi-histologic examination without the
need of tissue extraction.

The strongest hopes are multimodality systems that combine
in a complementary manner strengths of different imaging
modalities across various physical contrast mechanisms. They
have already found entrance in clinical practice. For example,
photodynamic image guidance using extrinsic fluorophores as
red flag technique to locate suspicious lesions during endoscopic
examination. Another recent example is fluorescence guidance
during brain tumor surgery using 5-aminolevulinic acid (5ALA).
Maeda et al. described the enhanced permeability and retention
(EPR) effect for lipid and macromolecular agents that helps to
accumulate fluorescent molecules in tumors [2]. The enhanced
vascular permeability supports rapid tumor growth by sustaining
an adequate supply of nutrients and oxygen [2].

However, for determination of tumor grade, a cellular
resolution technique is needed, such as confocalmicroscopy. Still,
the combination of high cellular resolution with large field of
view visual guidance during surgery is challenging with a single
imaging modality alone. A commercial surgical microscopy
platform therefore combines the surgical binocular view with an
external endoscope that can be brought in close contact with the
tissue of interest for virtual biopsy. The images are sent to the
local pathologist that can then examine the tissue via monitor,
quasi on-site. However, there is still information missing on the
invasiveness of such tumors. Information, that is important to
evaluate the tumor stage. This would for examplemean a decision
of whether a superficial early stage tumor can be removed right
during examination, or the patient needs to come back for
excision of a late stage invasive tumor in a full surgical setting.

Optical coherence tomography (OCT) is an optical technique
for three-dimensional imaging in real-time that has been
introduced about 25 years ago [3]. OCT promised to bridge the
gap between large field of view tissue inspection to high cellular
resolution tissue examination with the possibility to penetrate
into tissue as deep as 2mm. This penetration depth is sufficient
for assisting in the decision on tumor invasiveness [4]. It was
however soon found that the limited tissue specific contrast
mechanism, being backscattering alone, renders precise quasi-
histologic assessment a difficult task. Again, the mitigation of this
drawback is to exploit multimodal extensions of OCT. This can
on the one hand be achieved by functional extensions of OCT
itself, or by recruiting in addition molecularly sensitive optical
technologies.

The present article is therefore dedicated to highlight recent
developments for intra- and inter- multimodal imaging based on
OCT. We deliberately leave out the sheer endless permutation of
the many other optical techniques such as fluorescence imaging,

diffuse optical tomography, confocal microscopy, etc., and the
combination with non-optical techniques such as ultrasound
[5], magnet resonance imaging, positron emission tomography,
radiography, etc. We believe that the multimodal concept of
optical techniques can be well exemplified by choosing OCT
and selected complementary techniques, and by highlighting the
gained benefit through their combination.

OPTICAL COHERENCE TOMOGRAPHY

Since the name OCT has been coined in 1991 [3], the method
has been rapidly evolving as mature medical imaging technology
until today [6]. The success story started with its application
in retinal imaging, where OCT provided the perfect tool for
monitoring and guiding the treatment of proliferative age-
related macular degeneration (AMD) with by that time novel
anti-vascular endothelial growth factor (VEGF) drugs. Soon
other applications in endoscopy, intravascular imaging, and
dermatology followed. OCT may be seen as missing link
between high-resolution microscopy on the one end, and deep
penetration but low resolution tomography techniques on the
other end. Its performance parameters are benchmarked against
established medical imaging technologies in Figure 1. Since
standard OCT alone does not provide molecular contrast, it is
already plotted in combination with photoacoustics and non-
linear optical microscopy.

Despite the relatively low penetration depth of a few
millimeters, OCT shared with optical microscopy the high
resolution down to a few micrometers and below without the
need of contact to the tissue. Therefore, it raised hope to be the
tool of choice for in-situ virtual biopsy for early stage tumors
overcoming the need of tissue extraction. Despite the immense
advancements of this imaging technology by several orders of
magnitudes in resolution, imaging speed, and sensitivity, this

FIGURE 1 | Medial imaging technologies as function of penetration depth,

molecular sensitivity, and spatial resolution; MRI, magnetic resonance imaging;

CT, computed tomography: SPECT, spectroscopic CT; PET, positron emission

tomography; PA/OCT, multimodal photoacoustics -OCT; NLM/OCT,

multimodal non-linear microscopy-OCT; BLI, bioluminescence imaging; DOT,

diffuse optical tomography; [adapted from [7, 8]].
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hope has not yet been fully manifested. The main reason is
the contrast mechanism being limited to backscattering alone.
The scattering property of tissue is a rather unspecific contrast,
which renders it a challenging task for example to grade tumors
or to assess metabolic cell states. Nevertheless, it provides
high structural sensitivity with resolution close to the level
of histopathology, combined with high imaging speed. This is
due to the coherent amplification scheme of OCT that allows
achieving shot noise limited detection even at short exposure
times. OCT is based on partial coherence interferometry (PCI),
which provides a one dimensional backscattered intensity profile
in depth, also called A-scan. First implementations of PCI applied
in the biomedical field were presented by Fercher in 1990 [9].
Combining PCI with lateral scanning to produce full tissue
tomograms or B-scans gave birth to the method of OCT in
1991 [3]. Soon after, in-vivo images of retinal tissue have been
presented [10, 11]. The method itself was originally based on
time-domain (TD) PCI, where broad bandwidth light is split
in amplitude into a reference and sample arm beam. After
recombination, the superposition of both beams gives rise to
visible interference fringes if the optical path length difference is
less than the temporal coherence length. Scanning the reference
arm length allows then interrogating the axial sample structure
using heterodyne detection, with an axial resolution given by the
temporal coherence length [12]. The coherence gating together
with the confocal gate efficiently reduces multiply scattered light
and enables imaging even in strongly scattering tissue. The axial
resolution δz is given only by the spectral properties of the light
source and is decoupled from the lateral resolution, unlike most
other optical imaging approaches. It is related to the center
wavelength λ and spectral bandwidth 1λ of the light source as
(assuming a Gaussian spectrum) [13]

δz = 0.44
λ2

1λ
(1)

The relation is plotted for various center wavelengths in Figure 2.
For a center wavelength of 800 nm, a bandwidth larger than
200 nm is required to achieve an axial resolution of about
1µm [14]. At 400 nm center wavelength the required bandwidth
reduces to only 50 nm. Shorter wavelength light has however the
disadvantage of experiencing stronger scattering (see Figure 3)
and therefore achieves only rather shallow penetration depths.
Also, for ophthalmic applications, near infrared light at 800 nm
or alternatively at 1060 nm is better tolerated as it is (almost)
invisible to the human eye. Novel swept sources operating at
1060 nm enable better penetration into deep structures in the
back of the eye, such as the choroid [15]. Longer wavelength light
experiences less scattering, however, water absorption becomes
dominating. An optimal compromise for imaging in endoscopy,
dermatology, or intravascular imaging seems to be 1300 nm.
Dental applications and neuroimaging by OCT could even
employ longer wavelength light toward 1550 or 1700 nm [6, 16,
17].

TD OCT reached already its limits in detection sensitivity
for medical applications at moderate A-scan rates of a few
kHz. A breakthrough in OCT imaging has been achieved

FIGURE 2 | The relation of axial resolution and spectral bandwidth in OCT

according to Equation 1 for typical wavelengths.

FIGURE 3 | Spectral absorption of water and tissue chromophores together

with scattering; shaded boxes are typical center wavelengths used for OCT

imaging with indicated applications; green, Hb; red; HbO2, blue, H2O; gray,

scattering; black, typical tissue attenuation.

by recognizing the sensitivity advantage of Fourier domain
(FD) OCT [18–20]. Suddenly, A-scan rates of several 10 kHz
became feasible, without compromising image quality. Modern
swept source technology boosted the imaging rates of research
instruments even beyond 1 MHz [21] whereas 100 kHz have
become standard in today’s commercial OCT platforms. What
is more, the paradigm shift concerning imaging speed gave new
impetus to multimodal functional extensions of OCT such as
Doppler OCT, or OCT elastography, and ultimately enabled
successful OCT angiography. Finally, the goal to provide real
time feedback to surgeons in a surgical microscope through
augmented reality with 3D real time display of OCT data,
has become technologically possible [22, 23]. Combining the
astounding imaging capabilities of OCT with highly molecule-
specific technologies in a multimodal platform will therefore be
an important step toward optical digital biopsy.
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INTRAMODAL MULTIMODALITY IMAGING
WITH OCT

Table 1 gives an overview about functional extensions of OCT
and their particular additional contrast mechanisms. The most
advanced of those extensions are Doppler OCT including the
variant of OCT angiography (OCTA), and polarization sensitive
OCT (PS OCT). Other techniques, such as OCT spectroscopy
or OCT elastography (OCE) have demonstrated their strong
potential for future applications in research settings. In the
following, we will give a short description of those modalities and
the additional contrast that can be achieved.

Doppler OCT and OCT Angiography
Doppler OCT (DOCT) had been one of the first functional
extensions of OCT [24]. It senses velocities of sample structures
along the observation direction. Typical moving structures
in tissue are flowing red blood cells. DOCT gives therefore
immediate access to tissue perfusion. In TD OCT the axial
velocity of red blood cells adds to the scanning velocity of
the reference arm. This increases or decreases the heterodyne
detection frequency due to the Doppler effect as

fdet = fhet + fD =
2vr
λ

±
2vs
λ

= (
2

λ
) (vr ± vs) , (2)

where λ is the center wavelength of the light source, vr is the
velocity of the moving reference arm, and vs is the axial velocity
component of the sample at motion. Hence frequency analysis
of the OCT signal allows extracting the velocity information
from the local Doppler frequency shift fD [25, 26]. A more
sensitive method for quantifying axial sample motion is based on
analyzing the interference fringe phase [27]. In fact, for velocity
quantification, the temporal phase difference between successive
signals is determined as

1φ =
4π

λ
vs1τ , (3)

where 1τ is the time difference between successive A-scans,
related to the A-scan rate asfA−scan =1/1τ . The unambiguous
maximal speed is given as v= ±λ/(41τ ). For typical A-scan
rates of TDOCT of 100 Hz−1 kHz in retinal imaging, one has
access to flow velocities between 20 and 200 µm/s. This range
is too slow for assessing flow within most vessels of the retinal
bed. A significant boost to the performance of DOCT has been
given by the introduction of FD OCT and its intrinsic higher
speed. With A-scan rates of 10 kHz up to 100 kHz, flow speeds
of 2 mm/s up to 20 mm/s were readily accessible [28]. The
minimal detectable velocity is given by the phase noise of the
OCT system. Again FD OCT, which does not need mechanical
scanning of the coherence gate, is intrinsically highly phase
stable and exhibits therefore an outstanding dynamic range for
sensing axial flow velocities [18, 29]. Note, however that vs is
the axial velocity component of the total sample velocity, i.e., the
component in direction of the OCT beam. In order to determine
the actual total velocity, it is important to know the so called
Doppler angle between the observation direction and the sample

motion direction. The full expression is given as Leitgeb et al.
[24] vs, tot = vs/cos α Extraction of the Doppler angle has been
the subject of several developments in DOCT. The most stable
solutions are to employ multiple beams for flow triangulation,
or to use en-face flow determination [30–33]. DOCT has not
found large clinical acceptance, since altered flow as disease
biomarker has not been validated yet in large clinical studies as
disease specific biomarker. Still, it yields unique information on
perfusion dynamics, which, when combined with spectroscopy
for determining tissue oxygen saturation, would yield important
metabolic information not available with any other technique. A
recent study in the retina demonstrated how to determine tissue
oxygen consumption based on the fact that the eye is an perfusion
end organ [34]: arterial flow entering the eye must also leave the
eye as venous flow. Hence by measuring the total flow together
with the oxygen saturation the oxygen consumption is obtained,
which offers exciting pharmacological research capabilities. The
combination of DOCT with spectroscopy has been pushed by
the availability of coherent light sources in the visible range,
where chromophores such as hemoglobin exhibit strongest
absorption (see Figure 3). Visible OCT as multimodal platform is
therefore one of the promising current trends in OCT technology
development [35–37].

The local phase change within vessels introduced by flowing
red blood cells yields a natural blood flow contrast within
tissue without the need for additional contrast agents [38]. For
higher flow velocities or equivalently larger A-scan times the
phase will be increasingly decorrelated [39]. Analyzing phase
differences between B-scans as opposed to A-scans gives even
rise to phase decorrelation within smallest capillaries [40]. This
is the basis of modern OCT angiography: using OCT signal
fluctuation or phase decorrelation to contrast flow against static
bulk tissue without actually quantifying the flow [41]. Themotion
contrast is readily achieved by calculating average differences
between intensity tomograms taken at the same location [42, 43].
Alternatively, phase differences or variances, or even differences
between the full complex signals can be evaluated [41, 44,
45]. In all cases, motion contrast OCT angiography across a
full 3D volume is achieved. In ophthalmology for example,
standard angiography has to be performed by intravenous
injection of contrast dyes. Fluorescein angiography is used to
contrast retinal vasculature, whereas for the deeper choroidal
vasculature indocyanine green (ICG) is administered, with the
risk of anaphylactic shock and other adverse side effects. The
procedure itself takes up to 20min and needs special trained
personnel. OCT angiography (OCTA) on the other hand is
needle free and contrasts the full vasculature across all depths
after a contact-free retinal scan of a few seconds. A small
drawback of OCTA is its dependence on the motion of blood
cells within the vessels, leakage is therefore hard to detect. Hence,
a full picture is obtained, if necessary for accurate diagnosis,
by complementing it with standard fundus angiography. An
important advantage of OCTA is its intrinsic co-registration
with morphologic features obtained with OCT. This intramodal
multimodality concept gives new impetus to fields such as
dermatology, where OCT alone has not yet reached the same
importance as in ophthalmology. Angiography provides new
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TABLE 1 | Functional OCT extensions, their contrast mechanisms, and applications.

Contrast mechanism Tissue/Application

PS OCT Birefringence

Depolarization

Fibrous structures (e.g., nerve fibers; collagen fibers, fibrils, muscle fibers, tendons)

Pigment; cancerous tissue (degradation of ordered structure); aspherical exogenous contrast

agents (gold nano-rods)

Doppler OCT Interferometric phase shift due to axial

displacement;

Blood flow; axial motion of scattering tissue or tissue compartments;

OCT Angiography Motion contrast (speckle and/or phase

decorrelation)

Vascular structure; lymphatic vessels (employing exogenous scattering enhancement);

OCT Elastography Interferometric phase shift due to axial

displacement in response to external stress;

Cancerous tissue (e.g., breast, prostate); vessel walls; cornea; sclera;

OCT

Spectroscopy

Spectral dependence of light scattering and

absorption

Blood oxygenation (hemoglobin/deoxyhemoglobin); exogenous contrast agents; gold

nanoparticles;

biomarkers of disease that are characteristic for certain diseases
and help for a better diagnosis by complementing the pure
morphologic features. It can be further combined with OCT
spectroscopy to better focus on the attenuation due to blood
against static bulk tissue. OCTA is already commercially available
for application in ophthalmology and dermatology.

Polarization Sensitive OCT (PS OCT)
Besides DOCT, polarization sensitive (PS) OCT is the most
advanced extension of OCT imaging. Microstructural order
of tissue and in general light-tissue interactions affect the
polarization state of backscattered light. Resolving the
polarization dependent light scattering gives access to those
tissue specific parameters yielding contrast beyond intensity
backscattering alone. The contrast mechanisms are birefringence,
diattenuation or dichroism, and depolarization (see Figure 4).
OCT detects coherent light, therefore is not capable to assess
depolarization in a direct manner. Directly accessible are linear
birefringence and diattenuation. Birefringent materials exhibit
refractive indices that depend on the polarization orientation and
on the propagation direction of light. Since the refractive index
defines the propagation speed of light within the material, the
transit time for the orthogonal polarization components through
the material is different. Hence, one of the polarization
components appears retarded with respect to the other
component depending on the material thickness and the
refractive index difference. Fibrous tissue consisting of parallel
fibrils with a matrix of different refractive index exhibits form
birefringence (Figure 4A). Examples are nerve fibers, muscle
fibers, or collagen rich tissue. Diattenuation describes losses
through absorption that in general can be different for the
orthogonal polarization states (Figure 4B) [48–52]. It has been
shown, however, that this polarization dependent effect does not
seem to play a major role in biological tissue [50]. Depolarization
of light may be caused by multiple scattering, as well as scattering
by non-spherical particles, e.g., by gold nano-rods [53]. It has
been observed in strongly pigmented tissue like the retinal
pigment layer, where depolarization is caused by melanin
granules (Figure 4C) [54]. There are different mathematical
descriptions of material polarization effects. The most complete
formalism is based on Mueller matrices and Stokes parameters

that include partial polarization and depolarization. OCT on the
other hand detects only fully coherent light. Thus, the measured
degree of polarization will always be unity [55]. Therefore, a
more convenient way to describe polarization effects in OCT is
the Jones formalism [56]. A polarizing material can be described
by four complex valued components of the Jones matrix, with
the two component Jones vector describing the polarization
state. The seven independent variables of the matrix together
with a common phase factor define the phase retardation
between the orthogonal polarization states, orientation of
the optical axis, the diattenuation, and the orientation of the
axis of diattenuation. The elements of the Jones matrix and
the vector components can be converted into Mueller matrix
elements and the Stokes vector [51, 57–62]. The Stokes vector
components define the degree of polarization (DOP). For OCT,
this definition has been generalized to the degree of polarization
uniformity (DOPU) [63, 64]. The DOPU can be regarded as
a DOP analyzed across several speckle grains. Although the
DOP stays constant within a single speckle grain, the DOPU
might become smaller than unity, since adjacent speckles might
exhibit different polarization states. Obviously the analysis
window defines the resolution for the DOPU map, which has
been improved by high-resolution imaging, temporal, and 3D
averaging [65–67]. Other developments define a depolarization
index, or a differential depolarization index, that is independent
of the input polarization state at the sample [68, 69].

There are various implementations of PS OCT, but in general
one can distinguish single input state methods, and multiple
input state methods [70, 71]. The basic PS OCT setup employs
two independent detection units for the orthogonal polarization
states [59]. For the single statemodality, the sample is illuminated
by circularly polarized light [60, 72]. The measured complex
interference signals of both polarization states IH,V = AH,V

exp(-iϕH,V) give access to sample reflectivity R, phase retardation
δ, optics axis orientation θ according to Baumann [70]:

R ∝ AH
2 + AV

2

δ = arctan (AV/AH) (4)

ϑ =
π − 1φ

2
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FIGURE 4 | Imaging tissue with polarization contrast using PS OCT. (A) Cartoon of birefringence in fibrous tissue. Light polarized parallel and perpendicular to the

birefringent axis propagates at different speeds. The accumulated relative phase retardation δ as well as the birefringent axis orientation θ can be measured by

PS-OCT. (B) Diattenuation. The two polarization components are subject to different attenuation characteristics. (C) Depolarization. The polarization state of scattered

light is scrambled in some tissues, e.g., in such containing melanin pigments. (D) PS OCT imaging of a human brain stem. The reflectivity image (left) displays the

intensity of backscattered light. Birefringent structures such as the vagus nerve (cranial nerve X, CNX,) and the cerebelloolivary fibers (COF) exhibit increased

retardation values (right). In the axis orientation image (right), the orientation of fiber tracts—e.g., in the inferior olivary nucleus (ION)—is shown in different colors as per

the color wheel below. Modified from [46] with permission from SPIE. (E) PS OCT imaging of depolarization in the human retina. The healthy retina on the left shows a

regular layered structures and strong depolarization in melanin-laden tissues such as the RPE. In late-stage dry AMD, the layered structure is destroyed in the macula.

In the atrophic zone, the interrogating OCT beam can penetrate deep into the choroid. The pigmented and hence depolarizing RPE and choroid are displayed in red

and green, respectively. Modified from Baumann et al. [47] with permission from OSA.

where 1ϕ = ϕV-ϕH. Phase retardation is an accumulative
quantity with birefringent tissue depth. The actual birefringence
can be extracted through determination of the phase retardation
slope along depth. The determined quantities define for
each pixel in the image the elements of the Stokes vector.
Averaging of the elements as explained above allows determining
depolarization. The main limitation of the single input state
method is the assumption that the axis of polarization
does not change with depth [73, 74], whereas the further
assumption of negligible diattenuation is valid for most
biological tissues [50, 62, 75]. By employing multiple polarization
input states, it is possible to determine the full Mueller
matrix elements to characterize the polarization properties
of samples [51, 55, 62, 76–84]. Different polarization states
are produced for example sequentially by placing an electro-
optic modulator in the sample arm. Using two orthogonal
states allows determining depth resolved Jones vectors and
thus depth resolved accumulated phase retardation, optical
axis orientation, as well as diattenuation. Depth resolved
mapping of the axis orientation has for example been used
for determining the orientation of birefringent collagen fibers

in tissue, termed optic polarization tractography (Figure 4D)
[85, 86].

Applications of PS OCT in medicine have been demonstrated
for anterior and posterior eye segment imaging, endoscopic
and catheter based OCT, imaging of collagen, nerves in
skin and brain, cartilage imaging and imaging of tumors.
For anterior eye imaging, examples include bleb formation
and progression after trabeculectomy surgery [87], improved
contrasting of the trabecular meshwork [88], or corneal
malformation (e.g., keratoconus) and other corneal lesions
[89–91]. Birefringent structures of interest of the posterior
segment are the nerve fiber layer, Henle’s fibers, and the
sclera [92]. The first two are of importance for glaucoma
diagnosis [93, 94]. It has been shown that birefringence loss
is an earlier indicator of ganglion cell loss, than nerve fiber
layer thickness [95]. Depolarizing effects are due to pigments
in the retinal pigment layer. These can be visualized using
DOPU maps, which further help for a better quantification of
diseases affecting the pigment layer, such as age-related macular
degeneration (AMD, see Figure 4E) [63, 96]. In addition,
PSOCT supports drusen quantification, and classification [46,
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97]. Especially for AMD, the combination of PSOCT and OCT
Angiography seems to be a perfect multimodal combination to
enhance understanding of pathogenesis, diagnosis and treatment
decision [98–100]. Fiber optic implementations of PSOCT open
further applications based on endoscopic probes or catheters.
An important application is the intravascular assessment of
atherosclerotic plaques [101–103], plaque rupture [104, 105], or
monitoring and guidance of RF ablation of the endocardium
[106]. In dermatology, PSOCT has been applied to assessment of
burn depth [77, 107, 108], scaring [109], or identification of basal
cell carcinoma [110]. In general, the determination of tumor
borders based on the destruction of collagen and the associated
reduced birefringence is a potentially important application that
has been demonstrated for various tumors in humans and animal
models [111–116].

Other Promising Functional Extensions
Phase sensitive detection as used for quantifying blood flow
is a general method for sensing any structural displacement.
The displacement sensitivity in OCT reaches a fraction of the
center wavelength and in some cases even below one nanometer.
With a given stress on the tissue, the resulting displacement
across a measured volume yields the mechanical properties
of the tissue expressed by the elasticity module. Elastography,
though with lower resolution, has been realized already in
commercial medical imaging devices based on ultrasonography
or magnetic resonance imaging [117]. Applications primarily for
detecting liver fibrosis or for breast cancer are limited by the
low resolution of those technologies which is typically in the
millimeter range [118, 119]. Optical methods on the other hand
share the advantage of cellular and even sub-cellular resolution.
In 1998 Schmitt et al. [120] demonstrated the potential of OCT
to provide in a depth resolved manner information about soft
tissue deformation as response to a static compression. The
use of TDOCT however limited the speed and displacement
sensitivity of optical coherence elastography (OCE) and hindered
its broader medical application. The rise of FDOCT and its
ability to record full 3D volumes within a few seconds or less
together with its higher sensitivity, both in intensity as well as
in phase, brought a new impetus for functional OCT extensions.
Especially during the last decade, several OCE methods have
been proposed, taking advantage of developments in fast CMOS
sensor technology as well as fast swept source lasers [121, 122]. In
general it is possible to distinguish between compression OCE,
harmonic OCE, and transient OCE. Although a forth category
should be added, measuring strain in response to naturally
induced stress such as to the heart beat pulse [123]. In the first
case, compression is induced through a compression plate in
contact with the tissue with periodic stress at frequencies of below
10Hz. OCT recording is performed through a transparent part
of the plate. The gradient of displacement with depth is called the
local strain and can be displayed as elastogram [120]. Assuming
that the load is leading to uniform stress across the tissue, the
strain is inversely proportional to the elastic modulus. In general,
strain is a tensor quantity, but phase sensitive detection allows
access only to the axial component of displacement. Similar
to Doppler OCT, multi beam OCT configurations might be

applied to retrieve the full 3D displacement map with nanometer
precision. Compression OCE may potentially be used during
surgical intervention for determining tumor borders that could
help avoiding tumor recurrence. Both in breast cancer as well
as prostate cancer, studies demonstrated the potential of OCE to
differentiate cancerous from healthy tissue in biopsies [124, 125].
For harmonic OCE, a standing mechanical wave is induced at
the surface at frequencies of 50Hz to 5 kHz. They are due to
reflections at tissue boundaries on the centimeter scale. The wave
appears at resonant frequencies characteristic for the tissue. The
frequencies can be interrogated by scanning the excitation load
frequency and determining the induced surface displacement
[126, 127]. Such spectroscopic OCE provide inside into tissue
viscoelasticity [128]. The challenge is however, to decouple the
structural impact on the standing waves from the actual elastic
properties of tissue. In case that the surface wave can propagate
freely, pulsed excitation can be applied similar to ultrasound
elastography. For such transient OCE, the traveling surface
waves are excited at frequencies above 1 kHz and the elastic
modulus of tissue is estimated from the acoustic phase velocity
measured with OCT [129]. Applications in ophthalmology have
been demonstrated, but in general transient techniques are time
consuming and challenging for in-vivo use. Modern high-speed
systems employing MHz swept sources, or parallel OCT might
overcome this drawback in the future.

Another promising functional extension of OCT is
spectroscopic OCT. As mentioned above, OCT relies on
the temporal coherence properties of the employed light source.
Shorter coherence means broader optical spectral subtend.
Analysis of the backscattered spectrum can therefore be used
for extracting absorption and scattering parameters of tissue.
First demonstration of spectroscopic OCT employed short
time Fourier transform to analyze localized spectral absorption
[130, 131]. The main challenge of spectroscopic OCT is the
dominant scattering contribution to the total attenuation, that is
in most applications larger than actual absorption. Differential
approaches assuming constant or linear scattering across the
analyzed spectra partially mitigate for this drawback [132–134].
Important tissue chromophores such as hemoglobin or melanin
exhibit strong absorption in the visible range. Differential
absorption at different wavelengths across the isosbestic points,
where oxy and deoxy-hemoglobin absorbance is equal, is also
the basis of oximetry devices as applied in pulse-oximetry or for
retinal oximetry. As mentioned earlier, visible light OCT that
has been enabled through supercontinuum sources, is currently
extensively investigated [35, 36, 135]. It allows for multimodal
imaging combining OCT, OCT angiography, Doppler OCT,
and tissue oximetry. Thereby, a complete image about tissue
nutrition and oxygen consumption can be obtained. Another
approach aims at quantifying the local signal attenuation, which
is dominated by the tissue backscattering properties [136–140].
The total attenuation gives rise to an exponential decay of the
backscattered signal with depth according to the Lambert-Beer’s
law. Hence, fitting a linear curve to the logarithmically scaled
intensity profile along depths yields the attenuation coefficient
as the slope of the curve. An en-face map of the slope value at
the tissue surface provides local attenuation maps. Whereas such
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procedure works well for homogenous samples, it is challenging
for actual tissue with their in general inhomogeneous distribution
of scatterers. An alternative attenuation mapping procedure
borrows from a method developed for ultrasound spectroscopy.
Under the condition that the signal is fully attenuated along the
depth scan, the local attenuation µ at pixel location i in depth
can be estimated as Vermeer et al. [141]

µ (i) ≈
I (i)

2δzP
∑∞

m=i+1 I (m)
(5)

where i is the index along depth, δzP is the axial resolution
in pixels, and the summation runs from depth location i to
the maximum depth index. This simple and fast approach
has been first introduced to OCT for glaucoma diagnosis and
promises as in the case of OCE to identify tumor borders online
during surgery, without the need of tissue extraction. Glioma
tissue has for example been successfully differentiated from
healthy brain tissue based on attenuation mapping [142]. Also
for intravascular imaging, successful application of attenuation
mapping to determine and characterize plaque deposits in vessel
walls has been demonstrated [137].

COMBINING OCT WITH OTHER IMAGING
TECHNOLOGIES—INTERMODAL
MULTIMODALITY

Other imaging modalities that help to enhance the molecular
imaging aspect in a multimodal combination with OCT are listed
in Table 2. They are compared with respect to their individual
advantages in a combined imaging platform. Particular sections
are devoted to the combination of OCT and OCTA with
photoacoustic tomography and microscopy as well as with non-
linear optical microscopy.

Table 3 compares the individual modalities for in-vivo
medical imaging qualitatively with respect to standard imaging
performance figures. The highest scores of “+ + +” need
to be seen always in comparison with other medical imaging
modalities. Concerning penetration depth for example, the
highest score would certainly go to full body imaging modalities
including ultrasound. Concerning structural resolution, optical
microscopy does not have at current any competing technology.
From the table, NLOM seems to combine a multitude
of advantages concerning resolution and molecular contrast,

but comes at the disadvantage of limited field-of-view, and
penetration depth. OCT is capable tomitigate both disadvantages
in a multimodal concept. PAT/PAM on the other hand has much
better depth penetration than OCT together with the molecular
specific absorption contrast, but suffers from low structural
contrast and resolution. In a combined platform, OCT fills the
gap of missing structural contrast and resolution. The following
sections give a short description of the complementary optical
techniques and outline the specific advantages of the multimodal
combination highlighting some applications.

OCT and Photo-Acoustics
Photo-acoustic imaging (PA) is based on the photo-acoustic
effect that has been first described by Bell in 1880 [143]. A
short pulse of light is absorbed by chromophore and may lead
to local thermoelastic expansion. The resulting local pressure
rise excites then a propagating sound wave—the photoacoustic
wave—that can be detected at the tissue surface. Bymeasuring the
photoacoustic waves after exciting a full volume it is possible to
reconstruct the distribution of absorbers within the volume in 3D
[144]. PA covers, depending on the detection bandwidth, a large
depth range, starting from several 100µm with photoacoustic
microscopy (PAM) to a few centimeters with photoacoustic
tomography (PAT) [145, 146]. Since PA is based on absorption
as contrast mechanism, it is fully complimentary to OCT, whose
contrast is based on back-scattering alone [147, 148]. OCT
is highly structurally sensitive, whereas PAT yields molecular
specific absorption contrast. In most cases PAT is used for
visualizing tissue vasculature, i.e., absorption by hemoglobin,
down to a depth of centimeters. Hence, the combination of
OCTA with PAT yields a complete description of skin perfusion.
The superficial small capillary loops and underlying capillary
and vessel beds with vessel diameters from 10 to 200µm are
visualized by OCTA down to a depth of 1mm. PAT complements
the angiography by resolving vessels with diameters from 100µm
on down to a depth of 5–10mm. Vessels within the transition
region at a depth of about 1mm help to co-register both
modalities (Figure 5) [149, 150]. Studies in dermatology are
currently investigating the clinical impact of such combined
PAT/OCT and OCTA imaging for diagnosis of skin disorders
[151].

In terms of resolution and depth optical-resolution photo-
acoustic microscopy (OR-PAM) can be better compared with
OCT [152]. Like OCT, OR-PAM scans the excitation beam, which

TABLE 2 | Modalities, contrast mechanisms, and imaging parameters.

Modality Contrast Penetration Resolution Field of View Frame rate

Confocal Microscopy back-scattering; fluorescence ≈200µm ≤1µm 200 × 200µm 2D/<100Hz

Multiphoton Microscopy fluorescence ≈1mm ≤1µm 200 × 200µm 2D/<10Hz

Non-linear Microscopy Raman scattering;, non-linear optical scattering; ≈200µm ≤1µm 200 × 200µm 2D/<10Hz

OCT back-scattering ≤2mm 1–10µm 5 × 5mm 3D/1Hz

OCTA Motion contrast (speckle and/or phase decorrelation) ≤2mm 1–10µm 5 × 5mm 3D/<0.5Hz

PAT photo-acoustic effect; absorption; ≈5–10mm 40–500µm 10 × 10mm 3D/<10 mHz

PAM photo-acoustic effect; absorption; ≤3mm ≈15µm 5 × 5mm 3D/<10 mHz
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TABLE 3 | Multimodal OCT imaging with molecular contrast.

OCT PAM/PAT NLOM

Speed
++++++++++++++++++++++++++++++++++++++++ --- ++++

Penetration Depth
+++ ++++++ -/+

Resolution
++++++ -/+ ++++++++++++++++++++++++++++++++

Field of View
++++ ++++++ ----

Molecular contrast ---- ++++++ +++++++++++++++++++++++++++++++

Structural contrast
++++++ ---- ++++++

System simplicity
++++++ +++++ -/+

(“+ + +,” excellent; “++,” very good; “+,” good; “-/+,” moderate: “−,” missing). The

colors enhance the readability of the table.

FIGURE 5 | Combined OCT/OCTA and PAT for depth enhanced visualization

of skin perfusion, (a) Maximum intensity projected OCTA for superficial

capillary beds; The yellow vessel structures appear both in OCTA and PAT and

are used for volume co-registration. (b) Color coded depth PAT for deeper

vascular structures; (c) volume rendered view of combined OCT (gray) and

OCT/PAT (red); (d) volume rendered view of combined OCTA and PAT. Scale

bar is 500µm. Modified from Liu et al. [149] with permission from OSA.

focal spot size defines the lateral resolution, across the tissue
surface. Studies combining both modalities included for example
chemically induced bovine cartilage osteoarthritis: OR-PAM
shows the locations of damages in cartilage such as clefts and
fissures, whereas OCT yields the overall matrix structure [153].
Another study visualized fluorescent protein labeled exocrine
pancreas and blood vessels in adult zebrafish, whereas OCT yields
the morphology of the matrix tissue, which ultimately allows for
better correlation with histology [154]. The full potential of PA is

to exploit the spectroscopic absorption contrast that can be used
to calculate blood oxygen saturation. Together with OCT/OCTA
and DOCT, this yields then information about tissue metabolic
rate [155]. OCT and PAT/PAM can be used in articulate arm
probes, that allows reaching various skin regions of patients. For
inner organs, photo-acoustic probes need to be introduced into
endoscopes [156]. Technological challenges for such designs have
only recently been overcome, and first endoscopically combined
OCT and photoacoustic imaging has been tested [157, 158]. A
major limitation of PAT and PAM is the relatively slow imaging
speed that makes it challenging for in-vivo applications in the
presence of involuntary motion and heartbeat. One of the key
factors in terms of speed is the pulse repetition rate of the laser
source together with the need of large pulse energies for full
field excitation in PAT. There are currently several new light
sources tested for their use in photoacoustic imaging including
supercontinuum sources. It is therefore expected that combined
OCT and photoacoustic imaging at various scales will play an
important role in future diagnostic medical devices.

OCT and Non-linear Optical Microscopy
(NLOM)
We have seen that the combination of OCT with a method
based on absorption can provide important complimentary
information on molecular sample composition. Whereas, PAT
or PAM gives access to ensemble properties of cells or organs,
optical biopsy calls also for cellular resolution techniques
[159]. In view of the fact that cell populations are inherently
heterogeneous, cellular resolution plays an important role for
assessment of tumor grade as well as immune response or
in general cell fate. Furthermore, the understanding of the
functional dynamics of the tumor microenvironment that has
been identified as one of the hallmarks of cancer, stresses the need
for both high cellular as well as metabolic resolution [160].

Multiphoton fluorescence microscopy (MPM) achieves
cellular and sub-cellular resolution with a high chemical
sensitivity based on endogenous as well as exogenous contrast.
Compared to single photon fluorescence, it does not require
confocal pin-holes due its inherent 3D sectioning capability
based on non-linear absorption processes. Due to the use of
longer wavelengths for excitation, MPM achieves good tissue
penetration depths of several hundreds of micrometers. In
addition, the application of in general lower average powers
avoids photodamage and photobleaching, which is indispensable
for in-vivo live cell imaging. The most common NLOM processes
are two- and three-photon excitation fluorescence (TPEF, 3PEF),
second harmonic generation (SHG), and coherent Raman
scattering. Table 4 lists a selection of endogenous and exogenous
fluorophores that can be detected with either of the MPM
methods, together with relevant clinical applications. A rich
overview about endogenous molecules assessable by MPM can
be found in the article of Zipfel et al. [162]. We included in
the table also aminolevulinic acid hydrochlorid (ALA) that is
commonly excited with single photon fluorescence (SPEF). ALA
accumulates in tumors due to the EPR effect [2] and can be
used for efficient guidance during intrasurgical brain tumor
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TABLE 4 | Typical molecules to be imaged by NLOM and MPM.

Molecule Endo-/exogenous Process Application

ALA* Exogenous SPEF Guided tumor

biopsy/surgery

GFP, RFP** Exogenous TPEF Preclinical imaging

NADH*** Endogenous TPEF Cell metabolism [161]

Lipofuscin Endogenous TPEF Retinal imaging; preclinical;

Serotonin Endogenous 3PEF Neurodegenerative disease

Elastin Endogenous TPEF Skin; tendons; muscles;

Collagen Endogenous SHG Skin; tumor invasiveness;

tendon structure, muscles;

*Aminolevulinic acid hydrochlorid; **green/red fluorescent protein; ***nicotinamide

adenine dinucleotide.

removal as well as for guided biopsy during endoscopy. It has
been successfully combined with OCT for fluorescence-guided
endoscopic OCT for rat bladder imaging [163, 164].

MPM techniques in general require high numeric aperture
(NA) optics for efficient excitation and detection. This leads to
a relatively small field of view of about 200µm in diameter.
Hence, the gained benefit of metabolic contrast comes with
tunnel vision that needs efficient guidance to address tissues of
interest. OCT has the advantage to provide morphologic contrast
on a mesoscopic scale over a larger field of view of several
millimeters in diameter. In addition, it yields information about
tumor invasiveness. The combination of MPM and OCT seems
therefore a natural match to bridge both scale and metabolic
contrast.

The combination of TPEF and OCT has been first
demonstrated already in 1999 by Beaurepaire et al. [165].
Employing an ultrafast Ti:Sapph laser is the most obvious
choice for such dual modality. The laser provides on the
one hand the short pulses of sub-100fs, needed for efficient
TPEF, and on the other hand short pulses guarantee broad
optical spectra translating in high axial resolution for OCT.
Its central wavelength of 800 nm with a bandwidth of typically
100–200 nm makes it also a good choice to excite important
intrinsic and extrinsic fluorophores, such as nicotinamide
adenine dinucleotide (NADH) or green fluorescent protein
(GFP). Whereas TPEF is an absorption process similar to SPEF,
SHG is a parametric non-linear process that occurs only in
non-centro-symmetric molecules [166]. The most prominent
example for such molecule in tissue is collagen, which is found
in form of elongated fibrils in muscles, skin, smooth muscles
of blood vessels, bone, cartilage, tendons, and the cornea [167].
Diseases that lead to structural disorders, such as cancer, or
arthritis, or aging processes, have an immediate impact on the
collagen structure [168] and thus on the SHG signal. SHG was
first successfully combined with OCT using a common ultrafast
Ti:Sapph laser source for in-vitro imaging of collagen [169],
followed by a vast number of other implementations [170]. Of
particular interest is the multimodal combination of PSOCT
with SHG for imaging of collagen. Cross-modality correlation of
the cellular resolution contrast of collagen rich structures yielded
by SHG provides insight into the large scale contrast mechanism

based on form birefringence provided by PS OCT [171]. The
combination of TPEF and SHG with OCT has been reported
by Vinegoni et al. [172] visualizing fibroblast cells with GFP
labeled vinculin and smooth muscle tissue from a transgenic
GFP mouse. Another multi-scale study measured the mechanical
and microstructural response of the central cornea from New
Zealand white rabbits postmortem [173]. The study included
corneal SHG imaging of diseases and healthy state as well as
collagen microstructural response to changes in intraocular
pressure correlating the results also with OCT. Multimodal
microscopy demonstrated improved molecular and multi-scale
structural contrast also for ex-vivo and in-vivo skin imaging
[174, 175]. A recent study demonstrated the combination of
tomographic OCT with selective plane illumination microscopy
(SPIM) for the study of mouse embryon development employing
fluorescence microscopy with the potential to be also combined
with MPM [176]. MPM has been shown to provide important
metabolic information in addition to cellular structural details in
various skin disorders and diseases such as basal cell carcinoma
and other skin cancers, hemangioma, psoriasis, pigmented
lesions, or connective tissue diseases [177, 178]. In a combined
multimodal platform with OCT and OCT angiography, the
endogenous proteins NADH and FAD have been visualized
with TPEF as metabolic indicators, SHG contrasted collagen,
and high-resolution OCT provided structural contrast on a
mesoscopic scale for MPM guidance [175] (Figure 6). OCTA
in addition yields complementary diagnostic information as
skin diseases and disorders exhibit characteristic angiographic
patterns [43]. For endoscopic applications, proper dispersion
control needs to be employed, in order to deliver the necessary
short pulses to the tissue through fibers. Simultaneous OCT and
MPM imaging was suggested employing a double-clad fiber,
with OCT recording through the single mode core, and MPM
recorded through the clad [179, 180].

Raman spectroscopy (RS) is probably the most molecularly
sensitive label-free modality. The sensitivity comes however at
the price of a very low efficiency: in an optimal case, only one
photon out of a million incident photons experiences Raman
scattering. Raman scattered light exhibits a frequency shift
related to the vibrational and rotational states of amolecule [181].
The combination of RS and OCT seemed to be very useful for the
interpretation of the in general complex RS spectra since OCT
yields the necessary structural contrast, as shown for example for
dental caries [182, 183], for application to skin cancer [183, 184],
or colon cancer [185]. The latter study reported an increase of
specificity, sensitivity, and accuracy for tumor assessment with
a multimodal approach reaching 94% in all categories. Depth
resolved confocal RS together with OCT has been demonstrated
on mucosal tissue, producing individual biochemical maps from
the epithelium and stroma [186].

The disadvantage of RS is the low efficiency and resulting long
measurement times, which leave in-vivo applications challenging.
Coherent RS, such as coherent anti-Stokes Raman scattering
(CARS) and stimulated Raman scattering (SRS) have the
advantage of an efficiency of several orders of magnitudes higher
than RS [187]. However, the excitation process requires a priori
knowledge of the excitations bands of interest. Molecule-sensitive
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FIGURE 6 | In vivo clinical MPM/OCT in healthy versus basal cell carcinoma (BCC) in the dorsal forearm. (a,b) OCT tomograms of healthy skin and of BCC. The scale

bars indicate 500µm; (c,d) 3D rendered OCT volume of healthy skin BCC. (e–h) MPM of healthy skin at different depths. (i–l) MPM of BCC at different depths. The

scale bars indicate 100µm. MPM is centered at the OCT volume. Green corresponds to TPF with contributions from melanin, NADH, and elastin, red displays the

SHG signal attributed to collagen; EPI- epidermis; SC, stratum corneum; SG, stratum granulosum; SS, stratum spinosum; DEJ, dermalepidermal junction; RD,

reticular dermis; PD, papillary dermis. Modified from Alex et al. [175] with permission from John Wiley&Sons.

OCT has been demonstrated by combination with coherent
interferometric CARS [170, 188, 189]. Current implementations
focus mainly on lipid rich structures.

NOTES ON STANDARDIZATION

Depending on the application, there are different standards that
define the OCT device specifications and performance tests, the
data handling, image interpretation, quantitative data extraction,
and the data formats. Concerning the posterior part of the
eye, the International Organization for Standardization (ISO)
norm ISO 16971:2015 contains the “minimum requirements for

OCT instruments and systems. It specifies tests and procedures
that will verify that a system or instrument complies with this
International Standard and so qualifies as an OCT in the meaning
of this International Standard. It specifies type test methods and
procedures that will allow the verification of capabilities of systems
that are beyond the minimum required for OCTs.” It is further
noted that these standards might in a future revision be extended
to include all other segments of the eye [190].

The other clinically established application regards
intravascular OCT. In a consensus paper compiled by
the International Working Group for Intravascular OCT
Standardization and Validation (IWG-IVOCT) the consensus
standards for acquisition, measurement, and reporting of
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intravascular OCT (IVOCT) studies are made available
as peer-reviewed publication [191]. It includes also
recommendations for the use of polarization sensitive OCT
and Doppler OCT. An important standardization regards the
storing and transferring of digital IVOCT images ensuring
interoperability between different IVOCT imaging systems
and PACS (Picture Archive and Communication System).
An established standard for exchanging medical images and
other information between medical imaging devices is DICOM
(Digital Imaging and Communication in Medicine). DICOM
Supplement 151 supports in particular IVOCT and is part of
the DICOM standard since 2011. It contains standard operation
procedures (SOP) for processing and presenting IVOCT image
data.

There is however no standardization yet on intermodal
multimodal imaging systems.

CONCLUSION

The present article demonstrates the ability of multimodal
imaging techniques to overcome limitations of single techniques
with respect to resolution, penetration depth, or molecular
sensitivity. Optical techniques in general suffer from limited
penetration depth mainly due to light scattering, especially
compared to standard radiologic imaging techniques such as
ultrasound or magnetic resonance. On the other hand, they
exhibit outstanding structural resolution, together with the
possibility of label-free molecule-specific imaging and sensing.
We demonstrated the capabilities of multimodal optical imaging
using the example of optical coherence tomography together with
intra- and inter modal combinations. We strongly believe that
multimodal approaches will ultimately enable to perform optical
biopsy levering the incidence of tumor recurrence. This will have
both a massive impact on the quality of life of patients as well as
their caretakers. We have further seen many more applications,

where a multimodal concept enhances diagnostic capabilities
also for other diseases beyond cancer. Especially age- and life-
style related diseases including age-related macular degeneration,
different forms of dementia, or diabetes will pose a significant
burden to our future health care systems due to demographic
changes. Enhanced diagnostics based on multimodal imaging is
therefore part of an important flagship programme, namely the
private partnership programme Photonics 21 of the European
commission [192]. Ultimately, the development of advanced
imaging techniques will enable novel personalized treatment,
early diagnostics, and form the basis for the development
of novel efficient drugs and cures for currently deadly
diseases.
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