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Abstract:  We present a fast calculation of the electromagnetic field ne
the focus of an objective with a high numerical aperture (NAytead of
direct integration, the vectorial Debyefiilaction integral is evaluated with
the fast Fourier transform for calculating the electrongnfield in the
entire focal region. We generalize this concept with thepchitransform
for obtaining a flexible sampling grid and an additional gaicomputation
speed. Under the conditions for the validity of the Debyegn&l repre-
sentation, our method yields the amplitude, phase and ipataon of the
focus field for an arbitrary paraxial input field on the objeet We present
two case studies by calculating the focus fields of &4®0 NA water
immersion objective for dierent amplitude distributions of the input field,
and a 100« 1.45 NA oil immersion objective containing evanescent field
contributions for both linearly and radially polarized intgields.

© 2006 Optical Society of America

OCIS codes: (220.2560) Optical design and fabrication, focus; (2660)9Physical optics,
diffraction theory; (070.2580) Fourier optics and optical algprocessing, Fourier optics;
(180.0180) Microscopy.

References and links

1. P. Debye, “Das Verhalten von Lichtwellen in der Nahe siBeennpunktes oder einer Brennlinie,” Ann. Phys.
30,755-776 (1909).
2. E. Wolf, “Electromagnetic diraction in optical systems, |. An integral representatibithe image field,” Proc.
R. Soc. London Ser. £53,349-357 (1959).
3. B. Richards, E. Wolf, “Electromagnetic fiiaction in optical systems, Il. Structure of the image figidan
aplanatic system,” Proc. R. Soc. London Se%8,358-379 (1959).
. Typically, a good accuracy is achieved fdr> 50 andN > 200 sampling points.
. P. Torok, P. Varga, “Electromagneticfidaction of light focused through a stratified medium,” ApPlpt. 36,
2305-2312 (1997).
6. J.J. Stamned&l)aves in Focal Regions: propagationjfdiction and focusing of light, sound and water waves,
Hilger, Bristol UK (1986).
7. G. Mikula, A. Kolodziejczyk, M. Makowski, C. Prokopowickl. Sypek, “Diffractive elements for imaging with
extended depth of focus,” Opt. Engd, 058001 (2005).
8. N. Huse, A. Schonle, S.W. Hell, “Z-polarized confocaktnoscopy,” J. Biomed. Op6, 480-484 (2001).
9. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, U.B. KaufPerformance of Fluorescence Correlation Spec-
troscopy for Measuring Miusion and Concentration,” Chem. PhysChény2324-2336 (2005).
10. For simplification, the sample indickkandmnwill be omitted further on.
11. M. Mansuripur, “Certain computational aspects of vedifiraction problems,” J. Opt. Soc. Am. & 786—-805
(1989).
12. M. Sypek, “Light propagation in the Fresnel region. Newnerical approach,” Opt. Comrtt16,43-48 (1995).
13. P. Luchini, “Two-dimensional numerical integrationingsa square mesh,” Comp. Phys. Confi, 303-310
(1984).
14. J. L. Bakx, “Hficient computation of optical disk readout by use of the chitmnsform,” Appl. Opt41,4897—
4903 (2002).

[

#75759 - $15.00 USD Received 3 October 2006; accepted 28 October 26008ected 26 April 2007
(C) 2006 OSA 13 November 2006Vol. 14, No. 23/ OPTICS EXPRESS 11277


https://core.ac.uk/display/147935837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

15. Y. Li, E. Wolf, “Three-dimensional intensity distriboh near the focus in systems ofiirent Fresnel numbers,”
J. Opt. Soc. Am. AL, 801-808 (1984).

16. W. Hsu, R. Barakat, “Stratton-Chu vectoriaffdiction of electromagnetic fields by apertures with apfibcato
small-Fresnel-number systems,” J. Opt. Soc. Anl11A623—-629 (1994).

17. E. Wolf, Y. Li, “Conditions for the validity of the Debyeiegral representation of focused fields,” Opt. Comm.
39,205-210 (1981).

18. P. Tordk, “Focusing of electromagnetic waves throagtielectric interface by lenses of finite Fresnel number,”
J. Opt. Soc. Am. AL5,3009-3015 (1998).

1. Introduction

The plane wave spectrum (PWS) method is a well-known #liclent technique for calculating
the propagation and fiifaction of electromagnetic (EM) fields. Itffieiency lies in the ability
to propagate EM fields from one plane to another using the=@stier transform (FFT).

In microscopy this concept is the essence of the Debye ajpation and is often used for
the calculation of the EM field [1, 2, 3] near the focus of highrerical aperture (NA) objec-
tives. Torok et al. considerably expanded this concepstiedying the focal field distribution
and its distortions in stratified media commonly encourtténeoptical microscopy [5]. For a
general and historical review onftiaction theory the reader is referred to Stamhes [6].

However, for focal field calculations in microscopy, in peutar for optical systems with
high NA, this classical problem turns into a computatiorfedlt=nge due to the highly oscil-
latory behavior of the involved functions. In addition, pozation éfects cannot be neglected
rendering this calculation long and tedious. Recent teghes in microscopy and tomography
such as the extended focus field [7], microscopy beyond tHeeAbsolution limit and point-
spread function engineering as advanced by S. Hell and bispgj8], or rigorous ab initio
calculations for fluorescence fluctuation spectroscopyaf@plify the demand for fast focal
field calculations.

In this paper we revisit the Debye approximation and propasevel and flexible implemen-
tation of the Debye integral incorporating thieets of amplitude, phase and polarization in an
overall manner. This new implementation is particularlitesaifor rapid numerical evaluation
and requires substantially lesat for calculating the amplitude, phase and polarizatian
EM field distribution generated by a high NA microscope obyec

The organization of this paper is as follows: Sectidn 2 idtres the Debye approximation,
i.e. the general framework and formulae used in the remainfdéis work. Section B outlines
the implementation based on the fast Fourier transform &R establishes the sampling and
border conditions for obtaining accurate numerical res@#inally, section 4 presents selected
examples, firstly the calculation of the EM field for ax40.20 NA water immersion microscope
objective, and secondly, for a 180L.45 NA oil immersion objective taking into account the
evanescent field contribution.

2. The Debye dffraction integral as Fourier transform

This section establishes the basic formalism based on thgeDéifraction integral and the
formulation of this integral as a Fourier transform. Theibaptical layout and the respective
coordinate systems are shown in Fig. 1. We assume that thisabpetup, i.e. the imaging
system obeys Abbe’s sine condition (as usually fulfilledrfocroscope objectives).

A coherent, monochromatic wave field parallel to the optécas crosses the aperture stop
A, propagates towards the principal plafeand is transferred to the principal plahg At
P,, the wave field is refracted and focused towards the focaltel The pointP lies on the
principal planeP; and illustrates the focusing of a ray &t towards the focal poinf,. The
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Fig. 1. Optical setup. The objective is represented by tleetape stopA with radiusR, the
principal plane®1 andP, with vertex pointsvV1 andV,, and the focF1 andF»,. The focal
length f is given asf = F1V1. The pointP is the intersection point of a ray witk, and
shows the relation of the positiorat P; of the incident wave; to the propagation angke
atP, of the transmitted wave;.

spherical surfac®; is centered af, and the deflection angteat the positiorP is given by

sing = R Q)
wherer is the df-axis coordinate of the incident wavR,the aperture stop radiudlA the
numerical aperture of the objective anghe index of refraction behind thi® surface. In our
setup, the apertur& is placed in the back focal plane, which results in a tele@eithaging
system.

Instead of the principal planes, pupils are frequently deethodeling the wave propagation
through the objective. However fifiaction at the aperture stapside the objectives not obvi-
ous if the incident wave is transferred directly from therente pupil to the exit pupil. Within
our representation, the wave propagation from the apepare A to the principal planéy
is easily calculated with the PWS method or in most casesdbaseclassical Fourier optics
principles.

The incident fieldE;(r, ) atP1 is decomposed into a radial component (p-polarized) and a
tangential component (s-polarized). The unit vectors faml s-polarization are

cosp —sing
€ = [sinq)] and &= [ CoSsp ] 2
0 0

where¢ is the azimuth angle around tizeaxis. Upon transmission, the unit vec&y is de-

flected byd and becomes
COSsp ol
& =|singcoss | . 3)

sing
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Hence, the amplitude, phase and polarization of the trateshfield atP; is

Ec(6.¢) = tp(Ei-€p) & +ts(Ei - &) & (4)

wheretp (6, ¢) andts(6, ¢) are the transmission cfiients (viz pupil function, apodization) for
p- and s-polarization, respectively. Accumulated phasedions, i.e. aberrationsas, as well

as attenuations, i.e. amplitude factors, are integratedercomplex parametets andts. As

we assume the incident field to be paraxial, the axial compidfgis small against the lateral
componentsyy and can be neglected even if the incident phase is not canbtahe Debye
approximation, the transmitted fiel is the plane wave spectrurof the focus fieldE near
F». Hence, the electric fiellf at a point &, Y, 2) is obtained by integrating the propagated plane
waves, viz

E(X,y, Z) = —I/l—ff Et(e ¢)e|(kzz—kxx—kyy) dQ

’ ) 2 (5)
= f sing f Ei(6, ¢)e @R dg dg .
0

0 0

The phase factagkz? accounts for the phase accumulation when propagating dhermaxis,
whereas the terra k) represents the phaseference of the wave front atfeaxis points
(x,y,2) with respect to the on-axis point,@2). The integration extends over the solid angle
under whichP; is observed aF, i.e. sin® = NA/n,. The wave vectok; is given in spherical
coordinate® and¢ by

where ko =

R'[(0’ ¢) = kOnI

—singsing
cos

21
= (6)

—Cosp sine]

The evaluation of Eg[. (5) is usually performed with a diraaterical integration taking into
account the coordinate transformations, which resulteénRichard-Wolf integral representa-
tion [2, 3]. Instead of the common ansatzgap)-sampling keeping @ = sinddddp constant is
obtained by using c@, = 1- mA® with me N. Forme {1...M} andn € {1...N}, the sampling

grid is defined by
1- /1-NA2/n?

O =arcco$l-m N

1\ 2rn
and ¢n = (n— E) W . (7)

At 6 = 0, a sampling point with a weight of(d= 719%/4 is added. Besides minimizing the
number of sampling points alorgy the calculation of the integrand and its integration can be
merged in a single matrix product resulting in a further i&itun of the computation time [4].

The outlined evaluation of the Debyefidlaction integral[(5) is quite fast, but still much
slower than the conventional computation of a Fraunhof@radition integral. However, Eq.
(5) can be easily rewritten as a Fourier transform by spiitthe phase factor into a lateral and
an axial term, and by performing the integration ogiinstead ofP,. Using Eq.[(1) and (6),
the integration step @ for a sampling oveP; is projected ont@®;, which yields

rdrdg (NA) dxdy 1 dkydky @)

dQ = =
(Rn) co¥y \Rn/ cos kt2 cos
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Insertion of this sampling step into E@! (5) results in

E(XMZ)L%k12 f f (Ex(6,¢)"/ cosg) e k9 .k . 9)
r<R

Extending now the integration oveg(k,) € R? by setting Ei| = 0 forr > Rallows to rewrite the
Debye difraction integral as a Fourier transform of the weighted fi&ldvhich finally results
in
it _
E(xY,2) = - —— F (E(6,6)€<?/ cosd) . 10
(xy.2) Aoktz(t(cp)/ ) (10)

This is the main result of this work. The Debye integral is reoygressed as a Fourier transform
of the field distribution in the aperture. The similarity of this expression with the conventional

Fraunhofer diraction integral is obvious. For a low NA imaging system, wedghting factor
is approximated by /icos? ~ 1 and Eq.[(10) is equivalent to the Fraunhofdfrdiction integral.

3. Numerical implementation

The numerical implementation is straightforward. A fastufier transform (FFT) of the
weighted field af?; is used for the numerical evaluation of Eq.(10). For an egtadt sam-
pling ky = mAK andky = nAK with AK = koNA/M, viz M sampling points over the aperture
radius, the sampling points @ are

Omn = arcsir(% Vme + n2) and dmn= arctar(%) for |ml,|n| < M. (11)

Multiplication of the integration step\K)? with the prefactor of Eql (10) yields the numerical
implementation of Eq/ (10) as
iR? i

E(%a, Yk, 2) = NIV FFT (€™ Et(6mn, ¢mn)/ COSmn) - (12)
Typically, the FFT is more than 180faster than the direct integration of EQ! (5) with matrix
multiplication. A good accuracy is achieved favi4 > 100x 100 sampling points ove®, but
care has to be taken in order to avoid artifacts due to samplid aliasing. Subsequently, the
necessary conditions for obtaining accurate results asstigated [10].

3.1. Sampling condition

The propagation facto#®? in Eq. (10) has to be calculated with high resolution for aate
results[11]. This imposes a condition on the phase disztatin, i.e. the phaslez must not
change by more tham between neighboring sampling points in the aperture pkan®/ith

k, = /k? —k2,, the sampling condition can be expressed as

d(k2)
ey

kxy
X

= max

m ax'

T
= max|ztand| < — 13
jztand] < <o (13)

whereAK = kgNA/M and ma)tang] = NA/ nt2— NA2. This immediately leads to a condition
for the minimum number of sampling points

2NAZ |7

,/ntZ—NAZ’l_o ,
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solely determined by the system parameters. For the nuahevaluation, an oversampling
of about X is suficient for improving the accuracy of the result. In additianlower limit
of M > 50 reveals necessary for an accurate sampling. @eviations from these sampling
conditions result in granular artifacts as seen in Fig..34a)a typical value foM, we have
chosenM = 125 for the focus field calculation of a 1.20 NA water immensabjective (see
the example 4.1). A high accuracy is obtained [k 2519, corresponding te: 12 um at a
wavelength of 488 nm.

Fig. 2. Two-dimensional fast Fourier transform F(FET/ cosﬂ) = E(x,y,0) limited to the

region of interest (dotted square). Left: Fiéld aperture matrix padded with zeros (dotted
rectangle). Center: FFT along the first dimension, croppetipadded with zeros. Right:
FFT along the second dimension. The arrows indicate theftvtemed dimension.

3.2. Sampling step

The focus fielcE is obtained for the sampling positions4x, nAy, 7). With Ak = 27/NAr and
Ar = fAK/k;, the sampling step in they-plane is

Ak M g
AX_Ay_fE_Nm (15)
whereN > 4M is the number of FFT sampling points per transformed dinten@&ee also Fig.
[2, where the arrows span oveWi2- 1 samples and the padded dimension dvesamples). For
optimal FFT performance, it is best to $¢t= 25 with s€ N. Respecting the condition (14Y)
can be adjusted to fiix andAy. Along thez-direction, the sampling can be chosen arbitrarily

by respecting the limits given above.

3.3. Aliasing suppression

Due to the Debye diraction integral expressed in Eq. (10), the fi#ldis the plane wave
spectrum of the focus fiel. Usually, the smallest area (aperture matrix) contaiting O is
transformed (see Fig. 2). The spectral procefet x E;/coss in Eq. (10) represents a spatial
convolutionE = ?(e”‘zz) - ?(E’dcos?). In general, the result of the convolution is non-zero
on an area larger than the aperture size, which may causéngligl2]. Therefore, the aper-
ture matrix is enlarged by zero padding to at least twiceiitsetisions before performing the
transform. In a final step, simple cropping of the transfortpat removes the padding.
Because we are only interested in the field near the focugahypover a range of several
wavelengths, we limit the computation of the FFT to this o&gdf interest (Fig. 2). The trans-
mitted field E; is padded with zeros along the first dimension. In this dirmmshe FFT is
calculated and the result cropped. Along the second diraengie same procedure is applied
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on the intermediate result. Zero padding simultaneoushpmesses aliasing and refines the
sampling grid for the focus field. Using two one-dimensidfial's with intermediate cropping
and zero padding minimizes the numerical processing cost.

3.4. Aperture rim smoothing

(a) Sharp, binary sampling (b) Smooth sampling

Fig. 3. Spectrum (logarithmic scale) with binary samplirighe aperture rim (a), respec-
tively with smoothing as given by Ed. (16) (b). Binary sampglileads to discretization

errors at the aperture rim, which results in granular artifat high frequencies. Therefore,
(a) is only accurate at low frequencies oye20% of the focal field. In (b) these artifacts
are almost suppressed f8170% of the focal field.

10 .
— smooth
|- sharp
10°
=}
<10}
=
2 .
Elol I PR i L
T I |
= I
[l
o WMIAINHE A1 - : : F4
10 | ‘ : : . B ; ‘
10

100 50 0 100
ky [271/256AR]

Fig. 4. Comparison of cross-sections through the 'shargd”smooth’ focal fields.

Figure 3 shows the spectra [dg-T(U)| for a circular aperture with radiud. As already
stated, the fieldJ vanishes outside the aperture for R, whereas inside the aperture for
r <R, the field is given at) = Ug. This discretization leads to a serrated aperture rim imaduc
granular artifacts at higher frequencies. Hence, the d@gpeiry function is only seen at low
frequencies (central region in Fig. 3(a), please note tharithmic scale). A smooth sampling
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of the aperture rim improves the accuracy of the spectrur [&Fig. (Fig. 3(b)) the rim was
sampled with the hyperbolic tangent as

u(r) = %(1+tan)—(i;:(R—r))) Uo (16)

whereAR = R/30 was the sampling step. The granular artifacts &reiently reduced and the
FFT approximates the Airy function with a good accuracy av@nuch larger area. Figure 4
shows a comparison of cross-sections of the spectra on ttidiamky, = 0. Overall, for values
lky| > 60x 27/256AR, the 'sharp’ spectrum shows granular artifacts, whereasthooth’ spec-
trum approximates well the Airy function.

3.5. Generalization based on the chirp z transform

We demonstrated the importance of zero padding while réisggethe sampling condition (14).
These constraints led to a minimal number of sampling pdints2® for the FFT € N). The
corresponding number of sampling poirkover the aperture radius often exceeds the ini-
tial guess based Eq. (14). In such cases, the chirp z trangfoZT) is computationally faster
than the FFT. In summary, the CZT (a) allows breaking theticeiahip betweeiM andN, (b)
allows an implicit frequencyféset, and (c) internalizes the zero padding. Applying thisege
alization, we adapted the sampling step in the focus fieldpeddently of the sampling step in
the input field, introduced an additional shift of the regadrinterest, and finally improved the
computational fiiciency.

Letz, Y me[0,M—1] be adiscrete representation of a spatial sigfrat mAr). The discrete
Fourier transform (DFT) at a frequenky- nAk ¥ n e [0,N — 1] is then obtained with

M-1
Fo= ) zme ™K. (17)
m=0

The FFT is a particular case of the DFT witlk = 2r/MAr andN = M. For Ak < 27/MAr, a
zero padding is implicitly contained in Eq. (17). Comparthg DFT with the CZT defined by
M-1

Zn= Z Zma ™M (18)
m=0

yieldsa= 1 andw = e 2k for obtaining the DFT as a particular case of the general G&tting
a = &0 shifts the frequency domain Ik (see above). Furthermore, Eq.(18) can be rewritten
as a convolution

Zy=w"2 '§112n1a‘r“vv"‘2/2 aw (M2 ((zma‘mvvmz/z) % (w‘mz/z))vvnz/2 (19)
m=0

that can be evaluated using twdl ¢ N — 1) point FFTs (a third one can be precomputed) [14].
Z=CZTaw(@ =W'"2 FF'I“l(FFT(zma‘"‘W”‘Z/Z)- FFT(W‘”‘Z/Z)) (20)

Based on the CZT, our computation method can be extendedfd¥A systems or for focus
fields with a large axial span. In such cases, the samplimgogrcomes distorted over the focus
depth [15, 16]. But within the framework of the CZT, this ditton can be compensated by a
non-linear scaling proportional to th&ective NA under which the apertufeis observed ap,
from a point (Q0,2) on the axis. As a result, the sampling depends upon the axial position
z,i.e. Ak(2) = Ak(0)f /(f + 2) with Ak(0) = Ak as defined before. Using the CZT, the additional
calculations remain restricted to the repeated compmtaﬁoFFT(\Asz/z) becausev varies
now withz
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4. Selected examples

This section presents example calculations for two high Néroscope objectives. In the first
example of a 1.20 NA water immersion objective, the varratbdifferent amplitude distribu-
tions (apodization) in the apertuge are discussed. For the second example, a 1.45 NA oil
immersion objective was chosen as used in total internaatidin microscopy. The refraction
at a cover glass-water interface at the focus is added andfiha of diferent polarization
distributions in the aperture pladeare discussed.

Before presenting these specific examples, the transmissidficientst, andts between
the principal plane®; andP» need to be defined. We present the microscope objective as an
optical system of only 2 optical interfaces and a convexrfate into the immersion medium
nt. To this end, the three interfaces provide a physical mantediéflection angleg € [0,7/2).

The amplitude transmissiotitieiency, i.e. apodization, and the polarization are obthbeesed
on the Fresnel equations.

If the glass lens has an index of refractiopand the immersion medium, the Fresnel
transmission cd@cients are calculated for the succession of thengirglass(g)—air(na)—
immersion(y) interfaces. The corresponding deflection aryleat each interface was chosen
proportional to the dference of the index of refraction, vig; o [nj — nj|. With ny = 1, the
Fresnel transmission cfiients are then

2
e 2ng — (n§ +1) cOag 2— 2N COHat 1)
P (né — 1) coHag 2n — (N? + 1) coPat
for p-polarization and
2
NG — 2NgCOSag+ 1 2— 2N cOHat
ng— 1 nF —2n Coat + 1

for s-polarization, respectively.

4.1. 1.20 NA water immersion objective

Figure[5 shows the focus intensity for a nearly uniform andaussian illumination in the
back aperture of a 1.20 NA water immersion objective. Ko Ay = 20 nm,Az= 50 nm and
M =100, a 2.0 GHz Pentium 4 processor computed the field withoinve of 3umx 3 umx
5 um i.e. 150x 150x 100 sampling points in less than 40 seconds. Taking the symiiméo
account, the volume was further extended {m®x 6 um x 10 um.

In Fig. 5(a), the aperture was overfilled and the resultirayofield shows the well-known
symmetry break of vectorial focus fields, for comparison Aliry profile was added. In Fig.
'5(b), the aperture was underfilled to about 60% and the fietdrines approximately gaussian.
Figurel 6 shows the electric fields along two major axes thinathg focus. For an overfilled
aperture, the Airy profile (based on a scalar, paraxial appration) is a good estimation of
the electric field along thg-axis. For an underfilled aperture, the diameter of the etlube is
~ 25% larger but the side lobes vanish quickly. In both casespblarization leads to a larger
x-extension compared to tlyeextension.

Figurel 7 and 8 show the intensity on the major planes throbghdcus. The polarization
dependent extensions of the lobes along the majoragesly creates a transition zone where
the fringe contrast is diminished.
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Fig. 5. Intensity distribution at the focus of a 1.20 NA watermersion objective for a
x-polarized laser beam with a wavelengthAgf= 488 nm. The aperture had a diameter
of 6.5 mm and the 2 beam diameter was 10 mm (a) and 4 mm (b), respectively. The
iso-intensity surfaces show the surfatgs,;) = e 1-~*max().
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Fig. 6. Electric field profiles along the- andy-axes, respectively, for the 401.20 NA
water immersion objective with overfilled and underfilleceetpre. The full laser beam
power was 1 mW. The Airy profile is given for comparison.
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Fig. 7. Cross-sections through the focus intensity distiim of Fig.5(a). The full laser
beam power was 1 mW.

wxa |

N »

z[um]
o

!

F10

w/m?]

F10 —

y [um]
o

I 10°
_1 L
10

-2

-3
-3 -2 -1 0 1 2 3 4 -2 0 2 4
X [pm] z[um]

Fig. 8. Cross-sections through the focus intensity distidm of Fig. 5(b). The full laser
beam power was 1 mW.
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4.2. 1.45 NA oil immersion objective

As a second example, we calculate the focus field of an otgedgsigned for total internal
reflection fluorescence (TIRF). The objective uses immarsibwith an index of refraction
matching the cover slip. Its NA of 1.45 is higher than the dé refraction of the sample
(ns = 1.33, aqueous solution). This generates a partially evane$oeus field at the cover
slip—sample interface. Depending upon the illuminatiothef aperture, the focus field can be
fully propagating or fully evanescent. A fully propagatifigld can be calculated easily with
the procedure outlined above. However, the evanescentdigittibution needs an additional
consideration for obtaining the total focus field.

First we determine the plane wave spectrinat the immersion oil-cover slip interface.
Next, the refraction at this interface and the cover slipysle interface is calculated in or-
der to obtain the plane wave spectrinin the sample (water). Finally, applying the Fourier
transform on the weighted and propagated specti#fEs/ coss yields the focus field. As
before, the anglé and the weighting factor/lcos) are calculated in the immersion oil. But
concerning the sampling condition, a specific issue relaidtle cover slip—sample interface
(14) needs to be considered. The highest anglesult in total internal reflection at the cover
slip—sample interface. At the critical angle = arcsin s/n), k; vanishes. For higher angles,
k, takes an imaginary value and the sampling condition (143lexed because*?Z becomes
just an amplitude factor. The problem arisegathere the sampling condition (13) results in a
singularity. LetM’ be the number of sampling points ovet 6. For avoiding this singularity
at 6, the sampling is chosen such thdt’(+ 1/2)AK = kg, i.e. . falls between two sampling
points. InsertingVl = (M’ + 1/2)NA/ng,

M’ VM +1/4
Ky = Kg——— k; = ke————— 2
V=S and 2= ST 12 (23)
into Eq. (13) then yields a generalized sampling condition
zZ
M 2 4nsNAZ . (24)

0

A 7x oversampling is used for improving the accuracy of the tegulparticular at &-axis
points. In addition, a lower limit oM > 100 was used fog — 0.
Because the field is calculated in the sample spfads,replaced by

cospsing’ Cps¢s_in0
Ks(6,9) = kons[simpsine’] =kory| Singsing (25)

cosy’ \Jn3/ng —sirf g

wherengsing = nysing. The unit vectog; for p-polarization becomes

Ccospcosy’
& =|singcosy’
sing’

: (26)

Figuré 9 shows the focus field of a 10Q.45 NA oil immersion objective. The aperture of the
objective was overfilled, resulting in a partially evanegdeld at the focus, where the cover
slip—sample (water) interface was placed. As for the forexample, the central lobe extends
less in they- than thex-direction for linear polarization (Fig. 9(a)). The focalume is reduced
to about 18 compared to the former water immersion objective. Selgatiradially polarized
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Fig. 9. Intensity distribution near the focus of a 1.45 NAinimersion objective for a laser
beam with a wavelength af, = 488 nm. The aperture had a diameter of 5.5 mm andthe
beam diameter was 10 mm. The iso-intensity surfaces shosutfaced (. » = e+7%1q)

in the sample space.
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Fig. 10. Cross-sections through the focus intensity distion of Fig{ 9(a). The full laser
beam power was 1 mW.

input field results in a rotationally symmetric focus fieldsi®wn in Figl 9(b). On the optical
axis, the electric field becomes puretpolarized. For a distances 0.3 um, thisz-component
is dominant. Further away from the cover slip—sample iateef thexy-components prevail,
which results in an annular field distribution.

The fine structure at the interface is due to the evanescem gantribution with incidence
angles above the critical angle. For instance, [Fig. 12 shioevsveighted fieldEs/ cosd for the
linear polarization. At the critical angl®&(A= 1.33), the field amplitude approximately doubles,
hence marking the abrupt transition from propagating tmeseaent fields.

5. Conclusions

We showed a fast and simple implementation of the vectomdl@ integral for calculating the
focus field of high NA objectives for arbitrary amplitude,gste and polarization distributions
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Fig. 11. Cross-sections through the focus intensity distion of Fig! 9(b). The full laser
beam power was 1 mW.
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Fig. 12. FieldEs/ cosd of Fig./9(a). FONA < 1.33, the field corresponds to a free propaga-
tion in the sample space, whereas lfoA > 1.33 an evanescent field is induced.

of the input field. The numerical evaluation with the fast fettransform is extremely fast and
allows a high flexibility of the input field. The result is acate under the conditions for the
validity of the Debye integral representation of focuseltifig17, 18] and the given sampling
conditions. For low NA, it converges quite naturally to adedield given by the Fraunhofer
approximation. With the chirp z transform, we extended aaicwations to low NA focus
fields requesting a non-linear scaling as shown by Li and #5116]. Tablé 1 summarizes the
performance of the dierent calculation methods on a personal computer.

In addition, we used a generalized pupil function (apodizatof high NA objectives taking
into account amplitude and polarization distributionseTgupil function incorporates wave
front aberrations as contained in real objectives as weHlrasnel transmission cfigients.
Based on these Fresnel ¢oeents, it is straightforward to include wave propagatiorotigh
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Method | Input fields, Integration Output Computation time
constraints (for 10C® points)

Classic | Analytic functions Quadrature of Points 20 min to hours
(rotational symmetry) | Bessel functions

Direct Any, high NA Matrix product | Lines ~ 30 min
(polar sampling)

FFT Any, high NA FFT xyplanes | ~ 1 min
(carteesian sampling)

CZT Any CZT xyplanes | ~30s
(carteesian sampling)

Table 1. Performance of lierent calculation methods.

stratified media.

In summary, our method allows fast and accurate calculsitddthe focus field in the entire
focal region, which opens the path to fast simulations fanpspread function engineering and

image deconvolution in three-dimensional light microscop
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