766 research outputs found

    Monkish Mysteries [supplemental materials]

    Get PDF

    Secret Tribunal, The [supplemental material]

    Get PDF

    Robotic High Precision Gaging Process

    Get PDF

    Fitting height and lengths of laws in finite solvable groups

    Full text link
    Let G be a finite solvable group, and let h(G) denote its Fitting height, namely the length of a shortest normal series in G with nilpotent factors. We show, that any law in G has length at least h(G). This result is then used to improve a previously given bound on the nonsolvable length of finite nonsolvable groups

    Free subgroups of inverse limits of iterated wreath products of non-abelian finite simple groups in primitive actions

    Get PDF
    Abstract Let đ’Č = { G i ∣ 1 ≀ i ∈ ℕ } {\mathcal{W}=\{G_{i}\mid 1\leq i\in\mathbb{N}\}} be a set of non-abelian finite simple groups. Set W 1 = G 1 {W_{1}=G_{1}} and choose a faithful transitive primitive W 1 W_{1} -set Δ 1 \varDelta_{1} . Assume that we have already constructed W n - 1 W_{n-1} and chosen a transitive faithful primitive W n - 1 W_{n-1} -set Δ n - 1 \varDelta_{n-1} . The group W n W_{n} is then defined as W n = G n ⁹ wr Δ n - 1 ⁥ W n - 1 {W_{n}=G_{n}\operatorname{wr}_{\varDelta_{n-1}}W_{n-1}} . If W is the inverse limit W = lim ← ⁥ ( W n , ρ n ) {W=}{\varprojlim(W_{n},\rho_{n})} with respect to the natural projections ρ n : W n → W n - 1 {\rho_{n}\colon W_{n}\to W_{n-1}} , we prove that, for each k ≄ 2 k\geq 2 , the set of k-tuples of W that freely generate a free subgroup of rank k is comeagre in W k W^{k} and its complement has Haar measure zero.</jats:p

    Bounding the fitting height in terms of the exponent

    Get PDF

    Sur quelques aspects de la donation Jacques et Guy Thuillier

    Get PDF
    Le musĂ©e des beaux-arts de Nancy s’est enrichi en 1999 d’une exceptionnelle donation anonyme d’arts graphiques d’environ mille cinq cents Ɠuvres, dessins et estampes. Cette collection, encore trĂšs confidentielle, contient des piĂšces rares, acquises par un Ɠil exceptionnel. ComposĂ©e pour la plus grande partie (plus de douze mille feuilles) d’estampes, art exigeant et peu connu, elle invite le spectateur attentif Ă  la dĂ©couverte de piĂšces d’une richesse insoupçonnĂ©e. Cet ensemble, fruit d’une v..
    • 

    corecore