766 research outputs found
Fitting height and lengths of laws in finite solvable groups
Let G be a finite solvable group, and let h(G) denote its Fitting height,
namely the length of a shortest normal series in G with nilpotent factors. We
show, that any law in G has length at least h(G). This result is then used to
improve a previously given bound on the nonsolvable length of finite
nonsolvable groups
Free subgroups of inverse limits of iterated wreath products of non-abelian finite simple groups in primitive actions
Abstract
Let
đČ
=
{
G
i
âŁ
1
â€
i
â
â
}
{\mathcal{W}=\{G_{i}\mid 1\leq i\in\mathbb{N}\}}
be a set
of non-abelian finite simple groups.
Set
W
1
=
G
1
{W_{1}=G_{1}}
and choose a faithful transitive primitive
W
1
W_{1}
-set
Î
1
\varDelta_{1}
.
Assume that we have already
constructed
W
n
-
1
W_{n-1}
and chosen a transitive faithful primitive
W
n
-
1
W_{n-1}
-set
Î
n
-
1
\varDelta_{n-1}
.
The group
W
n
W_{n}
is then defined as
W
n
=
G
n
âą
wr
Î
n
-
1
âĄ
W
n
-
1
{W_{n}=G_{n}\operatorname{wr}_{\varDelta_{n-1}}W_{n-1}}
.
If W is the inverse limit
W
=
lim
â
âĄ
(
W
n
,
Ï
n
)
{W=}{\varprojlim(W_{n},\rho_{n})}
with respect to the natural
projections
Ï
n
:
W
n
â
W
n
-
1
{\rho_{n}\colon W_{n}\to W_{n-1}}
, we prove that, for each
k
â„
2
k\geq 2
, the set of k-tuples of W that freely generate a free subgroup of rank k is comeagre in
W
k
W^{k}
and its complement has Haar measure zero.</jats:p
Sur quelques aspects de la donation Jacques et Guy Thuillier
Le musĂ©e des beaux-arts de Nancy sâest enrichi en 1999 dâune exceptionnelle donation anonyme dâarts graphiques dâenviron mille cinq cents Ćuvres, dessins et estampes. Cette collection, encore trĂšs confidentielle, contient des piĂšces rares, acquises par un Ćil exceptionnel. ComposĂ©e pour la plus grande partie (plus de douze mille feuilles) dâestampes, art exigeant et peu connu, elle invite le spectateur attentif Ă la dĂ©couverte de piĂšces dâune richesse insoupçonnĂ©e. Cet ensemble, fruit dâune v..
- âŠ