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Abstract
Every finite solvable group G has a normal series with nilpotent factors. The smallest pos-
sible number of factors in such a series is called the Fitting height h(G). In the present 
paper, we derive an upper bound for h(G) in terms of the exponent of G. Our bound consti-
tutes a considerable improvement of an earlier bound obtained in Shalev (Proc Am Math 
Soc 126(12):3495–3499, 1998).

Keywords  Solvable group · Fitting height · Exponent

Mathematics Subject Classification  20D10 · 20F14 · 20F16

1  Introduction

Let F(G) denote the Fitting subgroup of the group G. The Fitting series in G is defined via

When G is finite, this series reaches G if and only if G is solvable. The number of non-
trivial members of the Fitting series is called the Fitting height h(G) of G.

The Fitting height seems to have a strong influence on the structure of a finite solvable 
group. Quite a few investigations have been devoted to finding relations involving the Fit-
ting height and other invariants. The interested reader may get an idea of such kind of prob-
lems by consulting the survey [5] and its bibliography.

F0(G) = 1 and Fi(G)∕Fi−1(G) = F(G∕Fi−1(G)) for every i ≥ 1 .
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In this short note we will focus on the interplay between the Fitting height and the expo-
nent. Shalev proved in [3, Lemma 2.5] that

whenever G is a finite solvable group with exponent exp(G) = p
e1
1
… p

ek
k

 , where the pi 
are pairwise distinct primes. Let Ω(m) denote the number of prime divisors of the natu-
ral number m, counted with multiplicities. Shalev’s result implies the exponential bound 
h(G) < 3Ω(exp(G)).

Let Ω1(m) denote the number of odd prime divisors of m, which are Fermat primes 
(counted with multiplicities). We shall improve Shalev’s inequality to a linear bound as 
follows.

Theorem 1  Consider a finite solvable group G. Then

A slightly nicer bound holds for groups of odd order.

Theorem 2  Consider a finite group G of odd order. Then

The bound given by Theorem 1 is tight, whenever the order of G is not divisible by any 
Fermat prime. To see this, let Pi be an elementary abelian pi-group, for distinct non-Fermat 
primes p1,… , pn . The iterated wreath product

of the groups Pi in their regular representations has Fitting height n and exponent 
m = p1 ⋯ pn ; therefore n = Ω(m) . This kind of example also shows, that the bound given 
in Theorem 2 is tight. It remains uncertain, whether equality can hold in Theorem 1 in the 
presence of Fermat primes.

It is worth remarking, that other common invariants of finite solvable groups cannot 
be bounded by a function of the exponent. For example, as pointed out in [6, p. 267], the 
derived length of the largest finite m-generated group of prime power exponent pn ≥ 4 is at 
least ⌊log2 m⌋ . Therefore, the derived length of a p-group cannot be bounded by a function 
of its exponent.

2 � The result

For any group G, let

It is clear that G has Fitting height n if and only if n is minimal with respect to �n(G) = 1.
Let G be a finite group. A tower of height n in G is a family {Pn,… ,P1} of non-trivial 

subgroups of G satisfying 

h(G) <

k∏

i=1

(2ei + 1).

h(G) ≤ Ω(exp(G)) + Ω1(exp(G)) ≤ 2Ω(exp(G)).

h(G) ≤ Ω(exp(G)).

((...(P1 ≀ P2) ≀ … ) ≀ Pn−1) ≀ Pn

�0(G) = G, �1(G) =
⋂

i∈ℕ

�i(G) and �n(G) = �1(�n−1(G)) for all n ≥ 2.
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(1)	 every Pi is a pi-group for some prime pi , where pi+1 ≠ pi for i = n − 1,… , 1,
(2)	 Pi normalizes Pj whenever i < j , and
(3)	 [Pi,Pi−1] = Pi for i = n,… , 2 , where we use the notation Pi = Pi∕Ci with Cn = 1 and 

Ci = CPi
(Pi+1) for i = n − 1,… , 1.

Note, that property (3) implies the non-triviality of the groups Pi whenever Pn ≠ 1 . The 
above definition is a slightly weaker form of the concept of a tower as introduced in [4].

Lemma 1  Every non-trivial finite solvable group with Fitting height n contains a tower of 
height n.

Proof  We shall call a family {Pn,… ,P1} of subgroups in G a weak tower of height n, if it 
satisfies properties (1) and (2) of a tower, and in addition 

	(3’)	 Pi ≠ 1  for all i.

By [4, Lemma 1.4], it is sufficient to show the existence of a weak tower of height n in 
G.

To this end, consider the Fitting series 1 = F0 < F1 < … < Fn = G in G. Here we have 
Fn = G , because G has Fitting height n. We shall proceed by induction over n in order to 
produce a weak tower {Pn,… ,P1} in G such that 

(⋆)   	� Pn−iFi∕Fi is a Sylow subgroup in Fi+1∕Fi for 0 ≤ i ≤ n − 1.
When n = 1 , choose any non-trivial Sylow subgroup P1 in G. Suppose then, that n > 1 . 

By induction, there exists a weak tower T in G∕F1 satisfying ( ⋆ ). From [4, Lemma 1.6], 
this leads to a weak tower {Pn−1,… ,P1} in G satisfying ( ⋆ ), such that T consists of the 
groups  PiF1∕F1  (n − 1 ≥ i ≥ 1) . For some prime pn ≠ pn−1 the group F1 contains a Sylow 
pn-subgroup Pn satisfying [Pn,Pn−1] ≠ 1 , because otherwise the subgroup Pn−1F1 would 
be a nilpotent normal subgroup in F2 and thus be contained in F1 , a contradiction. Now 
{Pn,… ,P1} is a weak tower in G. 	�  ◻

Lemma 2  Let G be a non-trivial finite solvable group with Fitting height n.Suppose, that 
G = Pn ⋯P1 for some tower {Pn,… ,P1} in G of height n. If N ⊴ G and PnN∕N ≠ 1 , then 
{PnN∕N,… ,P1N∕N} is a tower in G/N.

Proof  Let Qi = PiN∕N and Qi = Qi∕Di for all i, where Dn = 1 and Di = CQi
(Qi+1) for 

i = n − 1,… , 1 . Obviously, the family {Qn,… ,Q1} of subgroups of G/N inherits proper-
ties (1) and (2) of a tower from the given tower in G. Since Qn ≠ 1 by hypothesis, the non-
triviality of the groups Qi will be a consequence of property (3). Therefore it just remains 
to establish (3) for the family {Qn,… ,Q1}.

To this end, we will show first, that CPi
(Pi+1)N∕N ≤ Di for i = n − 1,… , 1 . This inclu-

sion obviously holds for i = n − 1 . We proceed by recursion and assume, that there exists 
k ∈ {n − 1,… , 2} such that the inclusion has already been shown for i = n − 1,… , k . Then 
Qk = Qk∕Dk is a homomorphic image of PkN∕CPk

(Pk+1)N , hence of Pk = Pk∕CPk
(Pk+1) . 

Since the involved homomorphisms are projections, and since all the involved groups are 
normalized by Pk−1 , we have that Qk is Pk−1-isomorphic to a quotient of Pk . Therefore, 
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CPk−1
(Pk) acts trivially on Qk , and we obtain CPk−1

(Pk)N∕N ≤ Dk−1 . This completes the 
recursion.

Now, for each i ∈ {n − 1,… , 1} , the quotient Qi is Pi−1-isomorphic to an image of Pi . 
Therefore property (3) of the given tower in G implies that [Qi,Pi−1] = Qi , and it follows 
that [Qi,Qi−1] = Qi for each i ∈ {n − 1,… , 1} . 	� ◻

Lemma 3  Let {Pn,… ,P1} be a tower in a finite solvable group. If G = Pn ⋯P1 , then 
�n−1(G) = Pn.

Proof  The claim is true when n < 2 . So we suppose now, that n ≥ 2 and argue by induc-
tion. Again, we consider the centralizer C = Cn−1 . Let X = Pn−1 ⋯P1 . By Lemma  2, 
the images in G/C of the groups Pn,… ,P1 form a tower of height n in G/C. Since 
CPn−1∕C

(PnC∕C) = Cn−1∕C = 1 , the images in G/C of the groups Pn−1,… ,P1 form a tower 
of height n − 1 , and X/C is the product of these images. Therefore our inductive hypothesis 
yields Pn−1 = �n−2(X)C ≤ �n−2(G)C.

We can use this relation in order to prove, that Pn ≤ �i(G) for all i < n : Beginning with 
Pn = [Pn,Pn−1] ≤ �2(G) , a recursion shows that

It follows that Pn ≤ �1(G).
Arguing by induction, we suppose next, that Pn ≤ �i(G) for some i ≤ n − 2 . Then

and it follows as before, that Pn ≤ �j+1(�i(G)) for all j. In particular Pn ≤ �i+1(G) . In the 
end, we obtain Pn ≤ �n−1(G).

On the other hand, the subgroups Ni = Pn ⋯Pi are normal in G and every Pi is nilpo-
tent. Therefore, �i(G) ≤ Pn ⋯Pi for all i. In particular, �n−1(G) ≤ Pn . 	�  ◻

Corollary 1  If the finite solvable group G is the product of subgroups, which form a tower 
of height n, then h(G) = n.

Corollary 2  Let G be a finite solvable group with a tower {Pn,… ,P1} such that 
G = Pn ⋯P1 . If a normal subgroup N of G does not contain Pn , then h(G∕N) = h(G) = n.

Proof  If h(G∕N) < n , then �n−1(G∕N) = 1 and Pn = �n−1(G) ≤ N . 	�  ◻

When T = {Pn,… ,P1 } is a tower in a finite solvable group G, we define

Recall, that the p-length �p(G) of a finite solvable group G is the number of p-factors in a 
shortest normal series in G, whose factors are p-groups or p′-groups.

Proposition 1  Let the finite solvable group G be the product of the subgroups in a tower T  . 
Then �p(G) = mp(T) for all primes p.

Pn = [Pn,Pn−1] ≤ [�j(G),G] = �j+1(G) for all j.

Pn =[Pn,Pn−1] ≤ [Pn, �n−2(G)C]

=[Pn, �n−2(G)] ≤ [�i(G), �n−2(G)] ≤ �2(�i(G)) ,

mp(T) = ||{i | Pi is a p − group}|| for each prime p.



Bounding the fitting height in terms of the exponent﻿	

1 3

Proof  We shall proceed by induction on the Fitting height n of G. Clearly, the claim holds 
for n ≤ 2 . So we assume now, that n > 2 and that the claim is true for all groups of Fitting 
height ≤ n − 1 . Amongst the groups of Fitting height ≤ n , we proceed by induction over 
|G|. We may thus assume, that h(G) = n and that the claim holds for all groups H of Fitting 
height ≤ n satisfying |H| < |G| . By hypothesis, G is the product of subgroups Pn,… ,P1 
forming a tower T .

Suppose, that there exists a non-trivial normal subgroup N in G, which is properly 
contained in Pn . The factor group G/N has Fitting height n, and Lemma  2 ensures that 
the subgroups PiN∕N (n ≥ i ≥ 1) form a tower S in G/N. By minimality of G, we have 
�p(G∕N) = mp(S) = mp(T) for all primes p. Now Opn

(G∕N) = Opn
(G)∕N ≥ Pn∕N ≠ 1 

implies �pn
(G) = �pn

(G∕N) = mpn
(T) . Moreover, �p(G) = �p(G∕N) = mp(T) holds for all 

primes p ≠ pn because N is a pn-group. We have thus shown, that it remains to treat the 
case, when Pn is a minimal normal subgroup in G.

Let V = Pn and X = Pn−1 ⋯P1 . Since G = VX and since V is abelian, we have 
V ∩ X ⊴ G . Hence V ∩ X = 1 or V ∩ X = V  . However, the latter case cannot occur, because 
V ≤ X and Pn−1 ⊴ X would imply V = [V ,Pn−1] ≤ V ∩ Pn−1 = 1 . We have thus shown, that 
G is the semidirect product of V and X.

Consider the centralizer C = CPn−1
(V) . Note that C < Pn−1 because of property (3) of 

the tower T  . By Lemma 2, the subgroups PiC∕C (n − 1 ≥ i ≥ 1) form a tower R in X/C. 
By minimality of G, we obtain mp(R) = �p(X∕C) for all primes p. Since C < Pn−1 , we 
also have �p(X∕C) = �p(X) for all primes p. It follows, that mp(T) = mp(R) = �p(X) for all 
primes p ≠ pn . It remains to treat the prime p = pn.

Consider the subgroup Op(G) of G. In the case when Op(G) = V  , we have 
mp(T) = mp(R) + 1 = �p(X∕C) + 1 = �p(X) + 1 = �p(G) . Therefore, it remains to treat 
the case when V < Op(G) . Note that VOp(X) is a normal p-subgroup in G. Therefore 
Op(G) = VX ∩ Op(G) = V(X ∩ Op(G)) ≤ VOp(X) ≤ Op(G) , so that equality holds. The 
non-trivial normal subgroup Z(Op(G)) ∩ V  of G must coincide with the minimal normal 
subgroup V of G. Thus, Y = Op(X) is centralized by V, hence Y ⊴ G = VX.

By Corollary 2, the group G∕Y = (PnY∕Y)⋯ (P1Y∕Y) has Fitting height n. It follows, 
that PiY∕Y ≠ 1 for i = n,… , 1 . And Lemma 2 ensures, that the subgroups PiY∕Y  form a 
tower U in G/Y. By minimal choice of G, we have mp(T) = mp(U) = �p(G∕Y) = �p(G) . 
The proof of Proposition 1 is complete. 	�  ◻

Proposition 2  Let G be a finite solvable group. For each prime p, let pep be the exponent of 
the Sylow p-subgroups of G and let �p denote the p-length of G. Then we have 

(1)	 �p ≤ 2ep , whenever p is an odd Fermat prime,
1.	  [(2)] �p ≤ ep , whenever p = 2 or p is odd and not a Fermat prime.

Proof  By [2, Theorem A] we have ep ≥ ⌊(lp + 1)∕2⌋ , whenever p is an odd Fermat prime. 
It follows that 2ep ≥ �p . In all other cases, ep ≥ �p follows from [2, Theorem A] for odd p 
and from [1] for p = 2 . 	�  ◻

We can now relate the exponent of a finite solvable group to its Fitting height.

Proof of Theorem 1  From Lemma 1 it is enough to prove the claim, when G is the product 
of subgroups forming a tower T  . The exponent of G is the product of the exponents of 
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its Sylow subgroups. If p1, p2,… , pk are the primes dividing |G|, where pi is Fermat for 
i = r + 1,… k , then we write pei

i
 for the exponent of the Sylow pi-subgroups of G. Proposi-

tions 1 and 2 directly imply

	�  ◻

Proof of Theorem  2  A group of odd order is solvable by Feit-Thompson theorem. Again 
it is enough to prove the claim when G = Pn ⋯P1 where {Pn,… ,P1} is a tower. Since 2 
does not divide the order of G, it is a consequence of [2, Theorem 2.1.1] and part (ii) of its 
Corollary, that the inequality �p ≤ ep holds for all prime divisors p of |G| . We thus obtain 
h(G) ≤ Ω(exp(G)) as in the proof of Theorem 1. 	�  ◻
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h(G) =

k∑

i=1

mpi
(G) =

k∑

i=1

�pi
(G)

≤

r∑

i=1

ei(G) + 2

k∑

i=r+1

ei(G) = Ω(exp(G)) + Ω1(exp(G)) .


