251 research outputs found

    Adaptive Thermostats for Noisy Gradient Systems

    Get PDF
    We study numerical methods for sampling probability measures in high dimension where the underlying model is only approximately identified with a gradient system. Extended stochastic dynamical methods are discussed which have application to multiscale models, nonequilibrium molecular dynamics, and Bayesian sampling techniques arising in emerging machine learning applications. In addition to providing a more comprehensive discussion of the foundations of these methods, we propose a new numerical method for the adaptive Langevin/stochastic gradient Nos\'{e}--Hoover thermostat that achieves a dramatic improvement in numerical efficiency over the most popular stochastic gradient methods reported in the literature. We also demonstrate that the newly established method inherits a superconvergence property (fourth order convergence to the invariant measure for configurational quantities) recently demonstrated in the setting of Langevin dynamics. Our findings are verified by numerical experiments

    Geometric Generalisations of SHAKE and RATTLE

    Full text link
    A geometric analysis of the Shake and Rattle methods for constrained Hamiltonian problems is carried out. The study reveals the underlying differential geometric foundation of the two methods, and the exact relation between them. In addition, the geometric insight naturally generalises Shake and Rattle to allow for a strictly larger class of constrained Hamiltonian systems than in the classical setting. In order for Shake and Rattle to be well defined, two basic assumptions are needed. First, a nondegeneracy assumption, which is a condition on the Hamiltonian, i.e., on the dynamics of the system. Second, a coisotropy assumption, which is a condition on the geometry of the constrained phase space. Non-trivial examples of systems fulfilling, and failing to fulfill, these assumptions are given

    Efficient stochastic thermostatting of path integral molecular dynamics

    Get PDF
    The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high-frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently-developed colored-noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nos\'e-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.Comment: Accepted for publication on JC

    Bulgac-Kusnezov-Nos\'e-Hoover thermostats

    Full text link
    In this paper we formulate Bulgac-Kusnezov constant temperature dynamics in phase space by means of non-Hamiltonian brackets. Two generalized versions of the dynamics are similarly defined: one where the Bulgac-Kusnezov demons are globally controlled by means of a single additional Nos\'e variable, and another where each demon is coupled to an independent Nos\'e-Hoover thermostat. Numerically stable and efficient measure-preserving time-reversible algorithms are derived in a systematic way for each case. The chaotic properties of the different phase space flows are numerically illustrated through the paradigmatic example of the one-dimensional harmonic oscillator. It is found that, while the simple Bulgac-Kusnezov thermostat is apparently not ergodic, both of the Nos\'e-Hoover controlled dynamics sample the canonical distribution correctly

    Strongly hyperbolic Hamiltonian systems in numerical relativity: Formulation and symplectic integration

    Full text link
    We consider two strongly hyperbolic Hamiltonian formulations of general relativity and their numerical integration with a free and a partially constrained symplectic integrator. In those formulations we use hyperbolic drivers for the shift and in one case also for the densitized lapse. A system where the densitized lapse is an external field allows to enforce the momentum constraints in a holonomically constrained Hamiltonian system and to turn the Hamilton constraint function from a weak to a strong invariant. These schemes are tested in a perturbed Minkowski and the Schwarzschild space-time. In those examples we find advantages of the strongly hyperbolic formulations over the ADM system presented in [arXiv:0807.0734]. Furthermore we observe stabilizing effects of the partially constrained evolution in Schwarzschild space-time as long as the momentum constraints are enforced.Comment: This version clarifies some points concerning the interpretation of the result

    Variational modelling of wave-structure interactions with an offshore wind-turbine mast

    Get PDF
    We consider the development of a mathematical model of water waves interacting with the mast of an offshore wind turbine. A variational approach is used for which the starting point is an action functional describing a dual system comprising a potential-flow fluid, a solid structure modelled with nonlinear elasticity, and the coupling between them. We develop a linearized model of the fluid–structure or wave–mast coupling, which is a linearization of the variational principle for the fully coupled nonlinear model. Our numerical results for the linear case indicate that our variational approach yields a stable numerical discretization of a fully coupled model of water waves and an elastic beam. The energy exchange between the subsystems is seen to be in balance, yielding a total energy that shows only small and bounded oscillations amplitude of which tends to zero with the second-order convergence as the timestep approaches zero. Similar second-order convergence is observed for spatial mesh refinement. The linearized model so far developed can be extended to a nonlinear regime

    Stochastic-dynamical thermostats for constraints and stiff restraints

    Get PDF
    A broad array of canonical sampling methods are available for molecular simulation based on stochastic-dynamical perturbation of Newtonian dynamics, including Langevin dynamics, Stochastic Velo- city Rescaling, and methods that combine Nosé-Hoover dynamics with stochastic perturbation. In this article we discuss several stochastic-dynamical thermostats in the setting of simulating systems with holonomic constraints. The approaches described are easily implemented and facilitate the recovery of correct canonical averages with minimal disturbance of the underlying dynamics. For the purpose of illustrating our results, we examine the numerical application of these methods to a simple atomic chain, where a Fixman term is required to correct the thermodynamic ensemble

    CFD investigation of a complete floating offshore wind turbine

    Get PDF
    This chapter presents numerical computations for floating offshore wind turbines for a machine of 10-MW rated power. The rotors were computed using the Helicopter Multi-Block flow solver of the University of Glasgow that solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform were computed using the Smoothed Particle Hydrodynamics method. This method is mesh-free, and represents the fluid by a set of discrete particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the loosely coupled algorithm used is described in detail alongside the obtained results

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure
    • …
    corecore