93 research outputs found

    The networked seceder model: Group formation in social and economic systems

    Full text link
    The seceder model illustrates how the desire to be different than the average can lead to formation of groups in a population. We turn the original, agent based, seceder model into a model of network evolution. We find that the structural characteristics our model closely matches empirical social networks. Statistics for the dynamics of group formation are also given. Extensions of the model to networks of companies are also discussed

    Apollo Lightcraft Project

    Get PDF
    This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics

    Apollo Lightcraft project

    Get PDF
    The detailed design of a beam-powered transatmospheric vehicle, the Apollo Lightcraft, was selected as the project for the design course. The principal goal is to reduce the LEO payload delivery cost by at least three orders of magnitude below the Space Shuttle Orbiter in the post 2020 era. The completely reusable, single-stage-to-orbit shuttlecraft will take off and land vertically, and have a reentry heat shield integrated with its lower surface. At appropriate points along the launch trajectory, the combined cycle propulsion system will transition through three or four airbreathing modes, and finally use a pure rocket mode for orbital insertion. The objective for the Spring semester propulsion source was to design and perform a detailed theoretical analysis on an advanced combined-cycle engine suitable for the Apollo Lightcraft. The preliminary theoretical analysis of this combined-cycle engine is now completed, and the acceleration performance along representative orbital trajectories was simulated. The total round trip cost is 3430or3430 or 686 per person. This represents a payload delivery cost of $3.11/lb, which is a factor of 1000 below the STS. The Apollo Lightcraft concept is now ready for a more detailed investigation during the Fall semester Transatmosphere Vehicle Design course

    Dynamics of Social Balance on Networks

    Full text link
    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad--a triangular loop with 1 or 3 unfriendly links--is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to "paradise"--all links are friendly--as the propensity p for friendly links in an update event passes through 1/2. A finite network always falls into a socially-balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network does not increase in an update is imposed, then the network quickly reaches a balanced final state.Comment: 10 pages, 7 figures, 2-column revtex4 forma

    Comparison of nutritional knowledge, attitudes and practices between urban and rural secondary school students: A cross-sectional study in Sabah, East Malaysia

    Get PDF
    Nutritional knowledge, attitudes and practice (KAP) may guide healthy meal choices. Here, nutritional KAP was compared across school students in Sabah based on locality and gender. A cross-sectional survey of students aged 15–19 years was conducted using multistage sampling. Nutritional KAP was measured via questionnaire. Anthropometric measures of weight and height were taken in person to calculate body mass index (BMI). Among the 994 participants, 80% were urban and 60% were female (mean age 16.5 ± 0.6 yr). Most were of Kadazan-Dusun (23%) ethnicity. Measured height for age Z score (HAZ) and BMI for age Z score (BAZ) differed between urban and rural students (−1.2 ± 0.8 versus −1.5 ± 0.7 for HAZ; p < 0.001; 0.2 ± 1.4 versus −0.1 ± 1.3; p = 0.02, respectively). No difference in nutritional knowledge was found, although urban students prioritized having a healthy/balanced diet (59.55% versus 48.50%, p = 0.03) and ate daily breakfast (57.4% versus 10.2%, p < 0.001) compared to rural. Females scored higher on nutritional knowledge than males (18.9 ± 2.8 vs. 18.1 ± 3.4, respectively, p = 0.0001), yet males selected more healthy/balanced foods (63.3% versus 53.3%, p = 0.041). The gap remains between nutritional KAP and translating this to healthy eating among adolescents, related to locality and gender

    The biological impact of blood pressure-associated genetic variants in the natriuretic peptide receptor C gene on human vascular smooth muscle.

    Get PDF
    Elevated blood pressure (BP) is a major global risk factor for cardiovascular disease. Genome-wide association studies have identified several genetic variants at the NPR3 locus associated with BP, but the functional impact of these variants remains to be determined. Here we confirmed, by a genome-wide association study within UK Biobank, the existence of two independent BP-related signals within NPR3 locus. Using human primary vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) from different individuals, we found that the BP-elevating alleles within one linkage disequilibrium block identified by the sentinel variant rs1173771 was associated with lower endogenous NPR3 mRNA and protein levels in VSMCs, together with reduced levels in open chromatin and nuclear protein binding. The BP-elevating alleles also increased VSMC proliferation, angiotensin II-induced calcium flux and cell contraction. However, an analogous genotype-dependent association was not observed in vascular ECs. Our study identifies novel, putative mechanisms for BP-associated variants at the NPR3 locus to elevate BP, further strengthening the case for targeting NPR-C as a therapeutic approach for hypertension and cardiovascular disease prevention

    Freshwater Sponges Have Functional, Sealing Epithelia with High Transepithelial Resistance and Negative Transepithelial Potential

    Get PDF
    Epithelial tissue — the sealed and polarized layer of cells that regulates transport of ions and solutes between the environment and the internal milieu — is a defining characteristic of the Eumetazoa. Sponges, the most ancient metazoan phylum [1], [2], are generally believed to lack true epithelia [3], [4], [5], but their ability to occlude passage of ions has never been tested. Here we show that freshwater sponges (Demospongiae, Haplosclerida) have functional epithelia with high transepithelial electrical resistance (TER), a transepithelial potential (TEP), and low permeability to small-molecule diffusion. Curiously, the Amphimedon queenslandica sponge genome lacks the classical occluding genes [5] considered necessary to regulate sealing and control of ion transport. The fact that freshwater sponge epithelia can seal suggests that either occluding molecules have been lost in some sponge lineages, or demosponges use novel molecular complexes for epithelial occlusion; if the latter, it raises the possibility that mechanisms for occlusion used by sponges may exist in other metazoa. Importantly, our results imply that functional epithelia evolved either several times, or once, in the ancestor of the Metazoa

    Vascular smooth muscle cells remodel collagen matrices by long-distance action and anisotropic interaction

    Get PDF
    While matrix remodeling plays a key role in vascular physiology and pathology, the underlying mechanisms have remained incompletely understood. We studied the remodeling of collagen matrices by individual vascular smooth muscle cells (SMCs), clusters and monolayers. In addition, we focused on the contribution of transglutaminase 2 (TG2), which plays an important role in the remodeling of small arteries. Single SMCs displaced fibers in collagen matrices at distances up to at least 300 μm in the course of 8–12 h. This process involved both ‘hauling up’ of matrix by the cells and local matrix compaction at a distance from the cells, up to 200 μm. This exceeded the distance over which cellular protrusions were active, implicating the involvement of secreted enzymes such as TG2. SMC isolated from TG2 KO mice still showed compaction, with changed dynamics and relaxation. The TG active site inhibitor L682777 blocked local compaction by wild type cells, strongly reducing the displacement of matrix towards the cells. At increasing cell density, cells cooperated to establish compaction. In a ring-shaped collagen matrix, this resulted in preferential displacement in the radial direction, perpendicular to the cellular long axis. This process was unaffected by inhibition of TG2 cross-linking. These results show that SMCs are capable of matrix remodeling by prolonged, gradual compaction along their short axis. This process could add to the 3D organization and remodeling of blood vessels based on the orientation and contraction of SMCs
    corecore