522 research outputs found
The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT
Renormalization Group Flows from Five-Dimensional Supergravity
The use of gauged supergravity as a tool in studying the
AdS/CFT correspondence for Yang-Mills theory is reviewed. The
supergravity potential implies a non-trivial, supersymmetric IR fixed point,
and the flow to this fixed point is described in terms of a supergravity kink.
The results agree perfectly with earlier, independent field theory results. A
supergravity inspired -function, and corresponding -theorem is discussed
for general flows, and the simplified form for supersymmetric flows is also
given. Flows along the Coulomb branch of the Yang-Mills theory are also
described from the five-dimensional perspective.Comment: 12 pages, 3 figures; Latex, ioplppt.sty, iopl12.sty, epsf.sty.
Contribution to Strings `9
Surveying bovine digital dermatitis and non-healing bovine foot lesions for the presence of Fusobacterium necrophorum, Porphyromonas endodontalis and Treponema pallidum.
BACKGROUND:Non-healing bovine foot lesions, including non-healing white line disease, non-healing sole ulcer and toe necrosis, are an increasingly important cause of chronic lameness that are poorly responsive to treatment. Recent studies have demonstrated a high-level association between these non-healing lesions and the Treponema phylogroups implicated in bovine digital dermatitis (BDD). However, a polymicrobial aetiology involving other gram-stain-negative anaerobes is suspected. METHODS:A PCR-based bacteriological survey of uncomplicated BDD lesions (n=10) and non-healing bovine foot lesions (n=10) targeting Fusobacterium necrophorum, Porphyromonas endodontalis, Dichelobacter nodosus and Treponema pallidum/T. paraluiscuniculi was performed. RESULTS:P. endodontalis DNA was detected in 80.0% of the non-healing lesion biopsies (p=<0.001) but was entirely absent from uncomplicated BDD lesion biopsies. When compared to the BDD lesions, F. necrophorum was detected at a higher frequency in the non-healing lesions (33.3% vs 70.0%, respectively), whereas D. nodosus was detected at a lower frequency (55.5% vs 20.0%, respectively). Conversely, T. pallidum/T. paraluiscuniculi DNA was not detected in either lesion type. CONCLUSION:The data from this pilot study suggest that P. endodontalis and F. necrophorum should be further investigated as potential aetiological agents of non-healing bovine foot lesions. A failure to detect syphilis treponemes in either lesion type is reassuring given the potential public health implications such an infection would present
Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors
A novel molecular scaffold has been synthesized, and its incorporation into new analogues of biologically active molecules across multiple target classes will be discussed. In these studies, we have shown use of the tricyclic scaffold to synthesize potent inhibitors of the serine peptidase DPP-4, antagonists of the CCR5 receptor, and highly potent and selective PI3K δ isoform inhibitors. We also describe the predicted physicochemical properties of the resulting inhibitors and conclude that the tractable molecular scaffold could have potential application in future drug discovery programs
Orbifolds and Flows from Gauged Supergravity
We examine orbifolds of the IIB string via gauged supergravity. For the
gravity duals of the A_{n-1} quiver gauge theories, we extract the massless
degrees of freedom and assemble them into multiplets of N=4 gauged supergravity
in five dimensions. We examine the embedding of the gauge group into the
isometry group of the scalar manifold, as well as the symmetries of the scalar
potential. From this we find that there is a large SU(1,n) symmetry group which
relates different RG flows in the dual quiver gauge theory. We find that this
symmetry implies an extension of the usual duality between ten-dimensional IIB
solutions which involves exchanging geometric moduli with background fluxes.Comment: 37 pages, harvma
Recommended from our members
An Accurate and Rapidly Calibrating Speech Neuroprosthesis
BackgroundBrain-computer interfaces can enable communication for people with paralysis by transforming cortical activity associated with attempted speech into text on a computer screen. Communication with brain-computer interfaces has been restricted by extensive training requirements and limited accuracy.MethodsA 45-year-old man with amyotrophic lateral sclerosis (ALS) with tetraparesis and severe dysarthria underwent surgical implantation of four microelectrode arrays into his left ventral precentral gyrus 5 years after the onset of the illness; these arrays recorded neural activity from 256 intracortical electrodes. We report the results of decoding his cortical neural activity as he attempted to speak in both prompted and unstructured conversational contexts. Decoded words were displayed on a screen and then vocalized with the use of text-to-speech software designed to sound like his pre-ALS voice.ResultsOn the first day of use (25 days after surgery), the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. Calibration of the neuroprosthesis required 30 minutes of cortical recordings while the participant attempted to speak, followed by subsequent processing. On the second day, after 1.4 additional hours of system training, the neuroprosthesis achieved 90.2% accuracy using a 125,000-word vocabulary. With further training data, the neuroprosthesis sustained 97.5% accuracy over a period of 8.4 months after surgical implantation, and the participant used it to communicate in self-paced conversations at a rate of approximately 32 words per minute for more than 248 cumulative hours.ConclusionsIn a person with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore conversational communication after brief training. (Funded by the Office of the Assistant Secretary of Defense for Health Affairs and others; BrainGate2 ClinicalTrials.gov number, NCT00912041.)
Low-Cost Hyperspectral Imaging with A Smartphone.
Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. ÂŁ100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone's abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole
Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells
© 2020, The Author(s). To study the localisation of G protein-coupled receptors (GPCR) in their native cellular environment requires their visualisation through fluorescent labelling. To overcome the requirement for genetic modification of the receptor or the limitations of dissociable fluorescent ligands, here we describe rational design of a compound that covalently and selectively labels a GPCR in living cells with a fluorescent moiety. We designed a fluorescent antagonist, in which the linker incorporated between pharmacophore (ZM241385) and fluorophore (sulfo-cyanine5) is able to facilitate covalent linking of the fluorophore to the adenosine A2A receptor. We pharmacologically and biochemically demonstrate irreversible fluorescent labelling without impeding access to the orthosteric binding site and demonstrate its use in endogenously expressing systems. This offers a non-invasive and selective approach to study function and localisation of native GPCRs
- …