39 research outputs found

    The MAP2/Tau family of microtubule-associated proteins

    Get PDF
    Microtubule-associated proteins (MAPs) of the MAP2/Tau family include the vertebrate proteins MAP2, MAP4, and Tau and homologs in other animals. All three vertebrate members of the family have alternative splice forms; all isoforms share a conserved carboxy-terminal domain containing microtubule-binding repeats, and an amino-terminal projection domain of varying size. MAP2 and Tau are found in neurons, whereas MAP4 is present in many other tissues but is generally absent from neurons. Members of the family are best known for their microtubule-stabilizing activity and for proposed roles regulating microtubule networks in the axons and dendrites of neurons. Contrary to this simple, traditional view, accumulating evidence suggests a much broader range of functions, such as binding to filamentous (F) actin, recruitment of signaling proteins, and regulation of microtubule-mediated transport. Tau is also implicated in Alzheimer's disease and other dementias. The ability of MAP2 to interact with both microtubules and F-actin might be critical for neuromorphogenic processes, such as neurite initiation, during which networks of microtubules and F-actin are reorganized in a coordinated manner. Various upstream kinases and interacting proteins have been identified that regulate the microtubule-stabilizing activity of MAP2/Tau family proteins

    The MAP1 family of microtubule-associated proteins

    Get PDF
    MAP1-family proteins are classical microtubule-associated proteins (MAPs) that bind along the microtubule lattice. The founding members, MAP1A and MAP1B, are predominantly expressed in neurons, where they are thought to be important in the formation and development of axons and dendrites. Mammalian genomes usually contain three family members, MAP1A, MAP1B and a shorter, more recently identified gene called MAP1S. By contrast, only one family member, Futsch, is found in Drosophila. After their initial expression, the MAP1A and MAP1B polypeptides are cleaved into light and heavy chains, which are then assembled into mature complexes together with the separately encoded light chain 3 subunit (LC3). Both MAP1A and MAP1B are well known for their microtubule-stabilizing activity, but MAP1 proteins can also interact with other cellular components, including filamentous actin and signaling proteins. Furthermore, the activity of MAP1A and MAP1B is controlled by upstream signaling mechanisms, including the MAP kinase and glycogen synthase kinase-3 β pathways

    Design and synthesis of Nrf2-derived hydrocarbon stapled peptides for the disruption of protein-DNA-interactions

    Get PDF
    Misregulation and mutations of the transcription factor Nrf2 are involved in the development of a variety of human diseases. In this study, we employed the technology of stapled peptides to address a protein-DNA-complex and designed a set of Nrf2-based derivatives. Varying the length and position of the hydrocarbon staple, we chose the best peptide for further evaluation in both fixed and living cells. Peptide 4 revealed significant enrichment within the nucleus compared to its linear counterpart 5, indicating potent binding to DNA. Our studies suggest that these molecules offer an interesting strategy to target activated Nrf2 in cancer cells

    NeuriteQuant: An open source toolkit for high content screens of neuronal Morphogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems.</p> <p>Results</p> <p>Here we present the development and validation of a novel bioinformatics pipeline called NeuriteQuant. This tool enables fully automated morphological analysis of large-scale image data from neuronal cultures or brain sections that display a high degree of complexity and overlap of neuronal outgrowths. It also provides an efficient web-based tool to review and evaluate the analysis process. In addition to its built-in functionality, NeuriteQuant can be readily extended based on the rich toolset offered by ImageJ and its associated community of developers. As proof of concept we performed automated screens for modulators of neuronal development in cultures of primary neurons and neuronally differentiated P19 stem cells, which demonstrated specific dose-dependent effects on neuronal morphology.</p> <p>Conclusions</p> <p>NeuriteQuant is a freely available open-source tool for the automated analysis and effective review of large-scale high-content screens. It is especially well suited to quantify the effect of experimental manipulations on physiologically relevant neuronal cultures or brain sections that display a high degree of complexity and overlap among neurites or other cellular structures.</p

    An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns.

    Get PDF
    Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator-inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics

    A Time Projection Chamber with GEM-Based Readout

    Full text link
    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.Comment: 22 pages, 19 figure

    Identifizierung und Charakterisierung von Interaktionspartnern des Na + -Phosphat-Kotransporters Typ II

    No full text
    Der Na+/Phosphat Kotransporter NaPi-IIa spielt eine wichtige Rolle in der Phosphathomöostase von Vertebraten. Insbesondere die stark polarisierte Sortierung des Proteins zur luminalen Membran, als auch die Regulation des Proteins durch verschiedene Stimuli erfordert spezifische Interaktionen mit Adapterproteinen. Ziel der Arbeit war die Identifizierung und molekulare Charakterisierung eines Bindungspartners von NaPi-IIa. Mit Hilfe eines Two-Hybrid Screens gelang es, die PDZ-Domäne des Proteins C160 aufgrund einer Wechselwirkung mit dem C-Terminus des Na+/Phosphat Kotransportsystems NaPi-IIa der Maus zu identifizieren. PDZ-Domänen erkennen unter anderem ein C-terminales Motiv mit der allgemeinen Konsensussequenz S/T-X-V/L/I-COOH. Dieses Motiv ist auch in den C-terminalen Aminosäuren des Na+/Phosphat Kotransporters vorhanden (T-R-L-COOH). Die Interaktion dieser Domäne mit dem NaPi-IIa C-Terminus wurde in vitro durch einen "Blot-Overlay" mit aufgereinigten Fusionsproteinen bestätigt. Um weitere Untersuchungen durchführen zu können, wurde der komplette Klon isoliert. Dieser umfaßt 4.3 kb und kodiert für ein Protein mit einem Molekulargewicht von 77 kD. Zur immunhistochemischen Lokalisation von C160 wurden Nierenzellkulturen (OK-Zellen) untersucht, welche C160 und NaPi-IIa überexprimieren. Mit Hilfe von zwei unterschiedlichen fluoreszenzmarkierten sekundären Antikörpern konnten beide Proteine in der Bürstensaummembran dieser Zellen kolokalisiert werden. C160 gehört zu der Adapter-Proteinfamile Shank. Zwei Isoformen dieser Proteinfamilie wurden untersucht: Shank 2 und das im Lauf der Arbeit klonierte und in Shank3b umbenannte C160. Im intakten Organ ist eine Wechselwirkung von Shank3b/C160 mit NaPi-IIa unwahrscheinlich. Shank3b/C160 ist nach immunhistochemischen Untersuchungen an Mäusenierenschnitten in einem anderen Zelltyp als NaPi-IIa exprimiert. Shank3b/C160 wurde ausschließlich in dendritischen Zellen und Lymphocyten detektiert, auch in Rattenniere, Rattenleber und Rattenthymus. Da die Isoform Shank2 ein vielversprechender Kandidat für eine physiologisch relevante Interaktion mit NaPi-IIa ist, wurde dieses Protein immunhistochemisch in der Mäuseniere lokalisiert. Hierdurch konnte klar gezeigt werden, daß Shank2 und NaPi-IIa in der Bürstensaummembran von proximalen Tubuluszellen der Niere kolokalisiert sind. Durch Western-Blots mit der Bürstensaummembranfraktion der Mäuseniere wurde dieser Befund bestätigt. Für eine funktionelle Einordnung von Shank2 in das komplexe Netzwerk von Interaktionen in der Regulation von NaPi-IIa sind jedoch zu wenig Informationen vorhanden. Eine Interaktion der beiden Proteine ist sehr wahrscheinlich, obwohl sie in vivo noch nicht auf molekularer Ebene bewiesen wurde. Beide Proteine werden jedoch zur luminalen Membran von proximalen Tubuluszellen sortiert. Zur Beschreibung der dynamischen Vorgänge in der spezifischen Regulation von NaPi-IIa sind jedoch sicherlich weitere Interaktionspartner nötig, welche noch identifiziert werden müssen

    Neurite outgrowth: a flick of the wrist

    Get PDF
    A new study has shown that, near the tip of a growing axon, dephosphorylation of the microtubule-associated protein Doublecortin is controlled by protein phosphatase 1 and its regulator spinophilin. This results in spatially regulated microtubule bundling within the axon and more efficient axon outgrowth
    corecore