18,036 research outputs found

    On methods to determine bounds on the Q-factor for a given directivity

    Full text link
    This paper revisit and extend the interesting case of bounds on the Q-factor for a given directivity for a small antenna of arbitrary shape. A higher directivity in a small antenna is closely connected with a narrow impedance bandwidth. The relation between bandwidth and a desired directivity is still not fully understood, not even for small antennas. Initial investigations in this direction has related the radius of a circumscribing sphere to the directivity, and bounds on the Q-factor has also been derived for a partial directivity in a given direction. In this paper we derive lower bounds on the Q-factor for a total desired directivity for an arbitrarily shaped antenna in a given direction as a convex problem using semi-definite relaxation techniques (SDR). We also show that the relaxed solution is also a solution of the original problem of determining the lower Q-factor bound for a total desired directivity. SDR can also be used to relax a class of other interesting non-convex constraints in antenna optimization such as tuning, losses, front-to-back ratio. We compare two different new methods to determine the lowest Q-factor for arbitrary shaped antennas for a given total directivity. We also compare our results with full EM-simulations of a parasitic element antenna with high directivity.Comment: Correct some minor typos in the previous versio

    Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering

    Full text link
    We study the Kondo effect in a quantum dot embedded in a mesoscopic ring taking into account intradot spin-flip scattering RR. Based on the finite-UU slave-boson mean-field approach, we find that the Kondo peak in the density of states is split into two peaks by this coherent spin-flip transition, which is responsible for some interesting features of the Kondo-assisted persistent current circulating the ring: (1) strong suppression and crossover to a sine function form with increasing RR; (2) appearance of a "hump" in the RR-dependent behavior for odd parity. RR-induced reverse of the persistent current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let

    A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I - Protection via specific pathways).

    Get PDF
    Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest

    On positive solutions and the Omega limit set for a class of delay differential equations

    Full text link
    This paper studies the positive solutions of a class of delay differential equations with two delays. These equations originate from the modeling of hematopoietic cell populations. We give a sufficient condition on the initial function for t≤0t\leq 0 such that the solution is positive for all time t>0t>0. The condition is "optimal". We also discuss the long time behavior of these positive solutions through a dynamical system on the space of continuous functions. We give a characteristic description of the ω\omega limit set of this dynamical system, which can provide informations about the long time behavior of positive solutions of the delay differential equation.Comment: 15 pages, 2 figure

    Effect of chromatic dispersion induced chirp on the temporal coherence property of individual beam from spontaneous four wave mixing

    Full text link
    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. To understand the effect of chirp on the temporal coherence property, two series of experiments are investigated by introducing different amount of chirp into either the pulsed pump or individual signal (idler) beam. In the first one, based on spontaneous four wave mixing in a piece of optical fiber, the intensity correlation function of the filtered individual signal beam, which characterizes the degree of temporal coherence, is measured as a function of the chirp of pump. The results demonstrate that the chirp of pump pulses decreases the degree of temporal coherence. In the second one, a Hong-Ou-Mandel type two-photon interference experiment with the signal beams generated in two different fibers is carried out. The results illustrate that the chirp of individual beam does not change the temporal coherence degree, but affect the temporal mode matching. To achieve high visibility, apart from improving the coherence degree by minimizing the chirp of pump, mode matching should be optimized by managing the chirps of individual beams.Comment: 17pages, 4figure

    Systematic study of proton-neutron pairing correlations in the nuclear shell model

    Full text link
    A shell-model study of proton-neutron pairing in 2p1f2p1f shell nuclei using a parametrized hamiltonian that includes deformation and spin-orbit effects as well as isoscalar and isovector pairing is reported. By working in a shell-model framework we are able to assess the role of the various modes of proton-neutron pairing in the presence of nuclear deformation without violating symmetries. Results are presented for 44^{44}Ti, 45^{45}Ti, 46^{46}Ti, 46^{46}V and 48^{48}Cr to assess how proton-neutron pair correlations emerge under different scenarios. We also study how the presence of a one-body spin-obit interaction affects the contribution of the various pairing modes.Comment: 12 pages, 16 figure

    Collisionless Magnetic Reconnection via Alfven Eigenmodes

    Full text link
    We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a process of Alfven eigenmodes' generation and dissipation. Alfven eigenmodes are confined by the current sheet in the same way that quantum mechanical waves are confined by the tanh^2 potential. The dynamical time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n=1 mode. The prediction of the n=1 mode shows good agreement with the in situ measurement of the reconnection-associated Hall fields
    • …
    corecore