8 research outputs found

    The BepiColombo Environment Radiation Monitor, BERM

    Get PDF
    The BepiColombo Environment Radiation Monitor (BERM) on board the European Space Agency's Mercury Planetary Orbiter (MPO), is designed to measure the radiation environment encountered by BepiColombo. The instrument measures electrons with energies from similar to 150 keV to similar to 10 MeV, protons with energies from similar to 1.5 MeV to similar to 100 MeV, and heavy ions with Linear Energy Transfer from 1 to 50 MeV.mg(-1).cm(2). BERM is operated continuously, being responsible for monitoring the radiation levels during all phases of the mission, including the cruise, the planetary flybys of Earth, Venus and Mercury, and the Hermean environment. In this paper, we describe the scientific objectives, instrument design and calibration, and the in-flight scientific performance of BERM. Moreover, we provide the first scientific results obtained by BERM during the BepiColombo flyby of Earth in April 2020, and after the impact of a solar energetic particle event during the cruise phase in May 2021. We also discuss the future plans of the instrument including synergies with other instruments on the BepiColombo and on other missions.Peer reviewe

    The BepiColombo Environment Radiation Monitor, BERM

    Get PDF
    The BepiColombo Environment Radiation Monitor (BERM) on board the European Space Agency's Mercury Planetary Orbiter (MPO), is designed to measure the radiation environment encountered by BepiColombo. The instrument measures electrons with energies from similar to 150 keV to similar to 10 MeV, protons with energies from similar to 1.5 MeV to similar to 100 MeV, and heavy ions with Linear Energy Transfer from 1 to 50 MeV.mg(-1).cm(2). BERM is operated continuously, being responsible for monitoring the radiation levels during all phases of the mission, including the cruise, the planetary flybys of Earth, Venus and Mercury, and the Hermean environment. In this paper, we describe the scientific objectives, instrument design and calibration, and the in-flight scientific performance of BERM. Moreover, we provide the first scientific results obtained by BERM during the BepiColombo flyby of Earth in April 2020, and after the impact of a solar energetic particle event during the cruise phase in May 2021. We also discuss the future plans of the instrument including synergies with other instruments on the BepiColombo and on other missions

    Vety ja polttokennot: Nykyinen teknologia ja kehitysnäkymät Suomessa ja Euroopassa

    No full text
    Tässä työssä tehtiin kirjallisuusselvitys vetyteknologioiden viimeaikaisesta kehityksestä sekä esiteltiin Suomen ja muiden Euroopan Unionin maiden sekä tutkimusyhteisöjen suunnitelmia siirtyä fossiilisten polttoaineiden käytöstä uusiutuviin energianlähteisiin perustuvaan vetytalouteen. Tärkeimmät syyt vetyteknologioihin siirtymiselle ovat nykyiseen energiantuotantoon ja käyttöön liittyvät maailmanlaajuiset ympäristöongelmat, moottoriliikenteen aiheuttamat paikalliset ilmanlaatuongelmat, fossiilisten polttoaineiden rajoitettu saatavuus ja korkea hinta sekä koko maailman riippuvuus poliittisesti epävakaasta Lähi-Idästä tuotavasta öljystä. Työssä kuvaillaan nykyiset sekä mahdollisesti lähitulevaisuudessa käytettävät teknologiat vedyn tuottamiseen, varastointiin, kuljetukseen ja käyttöön. Selvityksessä tuodaan esille teknologian nykytila, uusin kehitys, pahimmat ongelmat sekä kehitysnäkymät. Lisäksi arvioidaan vetyteknologioiden käyttömahdollisuuksia tulevaisuuden liikenne-, energiantuotanto- ja kannettavissa sovelluksissa. Lokakuussa 2002, Euroopan komissio asetti "High Level Group for Hydrogen and Fuel Cells" ryhmän pohtimaan Euroopan Unionin yhteistä vetystrategiaa. Ryhmä sisälsi edustajia sekä Euroopan tutkimuslaitoksista että teollisuudesta. Ryhmän tehtävä oli muodostaa yhteinen visio vetyteknologioiden osuudesta tulevaisuuden kestävissä energiajärjestelmissä. Ryhmän loppuraporttiin perustuva visio ja sen mukaiset tulevaisuuden näkymät Suomessa ja Euroopassa esitellään tässä työssä. Yksi ryhmän tärkeimmistä suosituksista oli perustaa EU tason "Hydrogen and Fuel Cells Teknology Platform" organisoimaan eurooppalaista vety- ja polttokennotutkimusta. Tässä työssä esitellään myös tärkeimpiä Euroopassa käynnissä olevia tutkimus- ja kokeiluprojekteja. Osana Hydrogen and Fuel Cells Technology Platform:in toimintaa, Euroopan Unioni yrittää aikaansaada julkisen sektorin ja yritysten välistä yhteistyötä tarvittavan teknologian kehittämiseksi. Myös Suomessa oli tarve arvioida tilanne, miten yritykset haluavat osallistua ja millaista osaamista ja resursseja Suomesta löytyy. Tästä syystä VTT teki yhteistyössä Tekes:in kanssa sähköpostikyselyn teollisuuden kiinnostuksesta asiaan. Tähän työhön sisältyy yhteenveto kyselyn tuloksista

    European Planetary Science Congress 2021

    No full text
    The Space environment is known to be populated by highly energetic particles. These particles originate from three main sources: (1) Galactic Cosmic Rays (GCRs), a low flux of protons (90%), heavy ions, and to some extent electrons, with energies up to 1021 eV, arriving from outside of the Solar System; (2) Solar Energetic Particles (SEPs), sporadic and unpredictable bursts of electrons, protons, and heavy ions, travelling much faster than the Space plasma, accelerated in Solar Flares and Coronal Mass Ejections; and (3) planetary trapped particles, a dynamic population of protons and electrons trapped around planetary magnetospheres first discovered at Earth by Van Allen. Solar activity is responsible for transient and long-term variation of the radiation environment. During periods of low activity, the GCR flux increases as a result of the lower heliospheric modulation exerted on charged particle from outside the solar system and the probability of SEP events decreases; vice-versa, during high activity, GCR fluxes decrease, and the probability of SEP events increases. Extreme Solar Events also affect the Earth’s magnetosphere and the radiation belts which can lead to ground-level enhancements. These three components of radiation in space combine into a hazardous environment for both manned and unmanned missions and are responsible for several processes in planetary bodies. Therefore, it is important to monitor and comprehend the dynamics of energetic particles in space. BepiColombo is the first mission of the European Space Agency to the Hermean System. It was launched in 2018 and will enter Mercury’s orbit in 2025 with the first flyby to Mercury planned for 2021. It is composed of two Spacecraft, ESA’s Mercury Planetary Orbiter (MPO) and JAXA’s Mercury Magnetospheric Orbiter (MMO). Both Spacecraft carry a rich suite of scientific instruments to study the planet geology, exosphere, and magnetosphere. In particular, the MPO spacecraft carries the BepiColombo Radiation Monitor (BERM), which is capable of measuring electrons with energies from ~100 keV to ~10 MeV, protons with energies from 1 MeV to ~200 MeV, and heavy ions with a Linear Energy Transfer from 1 to 50 MeV/mg/cm2. While BERM is part of the mission housekeeping, it will provide valuable scientific data of the energetic particle population in interplanetary space and at Mercury. Because BERM is in operation during most of the cruise phase, it is able to detect and characterize SEP events. In fact, two events were already registered and will be included in a multi-spacecraft analysis.  BERM is based on standard silicon stack detectors such as the SREM and the MFS. It consists of a single telescope stack with 11 Silicon detectors interleaved by aluminum and tantalum absorbers. Particle species and energies are determined by  charged particle track signals registered in the Si stack. Because of the limited bandwidth, particle events are processed in-flight before being sent to Earth. Particles are then assigned to 18 channels, five corresponding to electrons, eight to protons, and five to heavy ions. In this work, we will present the response of the 18 detector channels obtained by comparing Geant4 simulations with the BERM beam calibration data. The response functions are validated using measurements made during of the BepiColombo Earth flyby and during the cruise phase. Special focus is given  to the synergies between BERM and the Solar intensity X-ray and particle Spectrometer (SIXS) instrument signals. The latter measures electrons from ~50 keV to ~3 MeV and protons from ~1 to ~30 MeV. The availability of two instruments with overlapping energy ranges allows to validate and cross-calibrate their data, namely during Earth flyby at the radiation belts, and to maximize the scientific output of the mission. In fact, lessons learned during this joint analysis are expected to set the basis for a similar collaboration between the RADiation hard Electron Monitor (RADEM) and the Particle Environment Package (PEP) instruments aboard the future JUICE mission.</p

    The BepiColombo Mercury Imaging X-Ray Spectrometer: Science Goals, Instrument Performance and Operations

    Get PDF
    The Mercury Imaging X-ray Spectrometer is a highly novel instrument that is designed to map Mercury's elemental composition from orbit at two angular resolutions. By observing the fluorescence X-rays generated when solar-coronal X-rays and charged particles interact with the surface regolith, MIXS will be able to measure the atomic composition of the upper similar to 10-20 mu m of Mercury's surface on the day-side. Through precipitating particles on the night-side, MIXS will also determine the dynamic interaction of the planet's surface with the surrounding space environment. MIXS is composed of two complementary elements: MIXS-C is a collimated instrument which will achieve global coverage at a similar spatial resolution to that achieved (in the northern hemisphere only - i.e. similar to 50 - 100 km) by MESSENGER; MIXS-T is the first ever X-ray telescope to be sent to another planet and will, during periods of high solar activity (or intense precipitation of charged particles), reveal the X-ray flux from Mercury at better than 10 km resolution. The design, performance, scientific goals and operations plans of the instrument are discussed, including the initial results from commissioning in space.Peer reviewe
    corecore