14 research outputs found

    Exceptions and exemptions under the ballast water management convention – Sustainable alternatives for ballast water management?

    Get PDF
    Highlights ‱ Data quality is very important for conducting a reliable risk assessment. ‱ Same locations should be confined to smallest practicable areas within a port. ‱ Nearly all shipping routes with adequate data resulted in high-risk outcomes. ‱ Pelagic larval traits are key factors in natural dispersal modelling assessments.The International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM Convention) aims to mitigate the introduction risk of harmful aquatic organisms and pathogens (HAOP) via ships’ ballast water and sediments. The BWM Convention has set regulations for ships to utilise exceptions and exemptions from ballast water management under specific circumstances. This study evaluated local and regional case studies to provide clarity for situations, where ships could be excepted or exempted from ballast water management without risking recipient locations to new introductions of HAOP. Ships may be excepted from ballast water management if all ballasting operations are conducted in the same location (Regulation A-3.5 of the BWM Convention). The same location case study determined whether the entire Vuosaari harbour (Helsinki, Finland) should be considered as the same location based on salinity and composition of HAOP between the two harbour terminals. The Vuosaari harbour case study revealed mismatching occurrences of HAOP between the harbour terminals, supporting the recommendation that exceptions based on the same location concept should be limited to the smallest feasible areas within a harbour. The other case studies evaluated whether ballast water exemptions could be granted for ships using two existing risk assessment (RA) methods (Joint Harmonised Procedure [JHP] and Same Risk Area [SRA]), consistent with Regulation A-4 of the BWM Convention. The JHP method compares salinity and presence of target species (TS) between donor and recipient ports to indicate the introduction risk (high or low) attributed to transferring unmanaged ballast water. The SRA method uses a biophysical model to determine whether HAOP could naturally disperse between ports, regardless of their transportation in ballast water. The results of the JHP case study for the Baltic Sea and North-East Atlantic Ocean determined that over 97% of shipping routes within these regions resulted in a high-risk indication. The one route assessed in the Gulf of Maine, North America also resulted in a high-risk outcome. The SRA assessment resulted in an overall weak connectivity between all ports assessed within the Gulf of the St. Lawrence, indicating that a SRA-based exemption would not be appropriate for the entire study area. In summary, exceptions and exemptions should not be considered as common alternatives for ballast water management. The availability of recent and detailed species occurrence data was considered the most important factor to conduct a successful and reliable RA. SRA models should include biological factors that influence larval dispersal and recruitment potential (e.g., pelagic larval duration, settlement period) to provide a more realistic estimation of natural dispersal

    INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species

    Get PDF
    In a world where invasive alien species (IAS) are recognised as one of the major threats to biodiversity, leading scientists from five continents have come together to propose the concept of developing an international association for open knowledge and open data on IAS—termed “INVASIVESNET”. This new association will facilitate greater understanding and improved management of invasive alien species (IAS) and biological invasions globally, by developing a sustainable network of networks for effective knowledge exchange. In addition to their inclusion in the CBD Strategic Plan for Biodiversity, the increasing ecological, social, cultural and economic impacts associated with IAS have driven the development of multiple legal instruments and policies. This increases the need for greater co-ordination, co-operation, and information exchange among scientists, management, the community of practice and the public. INVASIVESNET will be formed by linking new and existing networks of interested stakeholders including international and national expert working groups and initiatives, individual scientists, database managers, thematic open access journals, environmental agencies, practitioners, managers, industry, non-government organisations, citizens and educational bodies. The association will develop technical tools and cyberinfrastructure for the collection, management and dissemination of data and information on IAS; create an effective communication platform for global stakeholders; and promote coordination and collaboration through international meetings, workshops, education, training and outreach. To date, the sustainability of many strategic national and international initiatives on IAS have unfortunately been hampered by time-limited grants or funding cycles. Recognising that IAS initiatives need to be globally coordinated and ongoing, we aim to develop a sustainable knowledge sharing association to connect the outputs of IAS research and to inform the consequential management and societal challenges arising from IAS introductions. INVASIVESNET will provide a dynamic and enduring network of networks to ensure the continuity of connections among the IAS community of practice, science and management

    Effects of starvation on the respiration rate and motility of the copepod Limnocalanus macrurus in a mesocosm experiment

    No full text
    2nd International Aquatic Mesocosm Research Symposium - from local processes to cross-domain interactions, 12-16 April 2021, Heraklion, Crete, GreeceThe effect of starvation on Limnocalanus macrurus energy metabolism and behavioural response was studied in a short-term experiment during August-September 2019 at the mesocosm facilities of Finnish Environment Institute in Helsinki (SYKE). Planktonic copepods, such as Limnocalanus macrurus, are able to survive during unfavourable periods by using fat reserves in their bodies represented mainly by wax lipids. Throughout the entire period of the 11-day experiment the stomachs of L. macrurus remained empty and all the studied individuals had an oil sac to store lipids. During the experiment the total respiration rate of adult females decreased by 1.9 times from 0.91±0.13 to 0.47±0.08 ÎŒg O2 mg-1h-1 on day 11 while basal weight specific respiration rate remained on the quasi constant level (0.4±0.05 ÎŒg O2 mg-1h-1). The indicators of motion activity of copepods (total duration, distance and average swimming speed, frequency and duration of movements) decreased by about 60% during the experiment. Such a decrease in the activity of copepods during the experiment can be explained by the lack of “fast” energy source for muscle activity, which is usually replenished with the energy of food. Taking into account that L. macrurus is mostly a carnivorous species adapted to the consumption of heterotrophic food in summer, we assumed that the studied population, which consisted mostly of preoverwintering adults and late copepodite stages, was not feeding as in natural conditions. The observed trend in total respiration rate without effect of starvation on basal respiration indicates that large energy reserves of this species are saved and kept for the future spring reproduction (egg production), but not for everyday energy expenditures associated with fast metabolic processe

    Historical baselines in marine bioinvasions: Implications for policy and management

    No full text
    The human-mediated introduction of marine non-indigenous species is a centuries- if not millennia-old phenomenon, but was only recently acknowledged as a potent driver of change in the sea. We provide a synopsis of key historical milestones for marine bioinvasions, including timelines of (a) discovery and understanding of the invasion process, focusing on transfer mechanisms and outcomes, (b) methodologies used for detection and monitoring, (c) approaches to ecological impacts research, and (d) management and policy responses. Early (until the mid-1900s) marine bioinvasions were given little attention, and in a number of cases actively and routinely facilitated. Beginning in the second half of the 20th century, several conspicuous non-indigenous species outbreaks with strong environmental, economic, and public health impacts raised widespread concerns and initiated shifts in public and scientific perceptions. These high-profile invasions led to policy documents and strategies to reduce the introduction and spread of non-indigenous species, although with significant time lags and limited success and focused on only a subset of transfer mechanisms. Integrated, multi-vector management within an ecosystem-based marine management context is urgently needed to address the complex interactions of natural and human pressures that drive invasions in marine ecosystem

    Impacts of changing climate on the non-indigenous invertebrates in the northern Baltic Sea by end of the twenty-first century

    Get PDF
    Biological invasions coupled with climate change drive changes in marine biodiversity. Warming climate and changes in hydrology may either enable or hinder the spread of non-indigenous species (NIS) and little is known about how climate change modifies the richness and impacts of NIS in specific sea areas. We calculated from climate change simulations (RCO-SCOBI model) the changes in summer time conditions which northern Baltic Sea may to go through by the end of the twenty-first century, e.g., 2-5 A degrees C sea surface temperature rise and even up to 1.75 unit decrease in salinity. We reviewed the temperature and salinity tolerances (i.e., physiological tolerances and occurrence ranges in the field) of pelagic and benthic NIS established in-or with dispersal potential to-the northern Baltic Sea, and assessed how climate change will likely affect them. Our findings suggest a future decrease in barnacle larvae and an increase in Ponto-Caspian cladocerans in the pelagic community. In benthos, polychaetes, gastropods and decapods may become less abundant. By contrast, dreissenid bivalves, amphipods and mysids are expected to widen their distribution and increase in abundance in the coastal areas of the northern Baltic Sea. Potential salinity decrease acts as a major driver for NIS biogeography in the northern Baltic Sea, but temperature increase and extended summer season allow higher reproduction success in bivalves, zooplankton, amphipods and mysids. Successful NIS, i.e., coastal crustacean and bivalve species, pose a risk to native biota, as many of them have already demonstrated harmful effects in the Baltic Sea
    corecore