808 research outputs found
Why the Realist-Instrumentalist Debate about Rational Choice Rests on a Mistake
Within the social sciences, much controversy exists about which status should be ascribed to the rationality assumption that forms the core of rational choice theories. Whilst realists argue that the rationality assumption is an empirical claim which describes real processes that cause individual action, instrumentalists maintain that it amounts to nothing more than an analytically set axiom or ‘as if’ hypothesis which helps in the generation of accurate predictions. In this paper, I argue that this realist-instrumentalist debate about rational choice theory can be overcome once it is realised that the rationality assumption is neither an empirical description nor an ‘as if’ hypothesis, but a normative claim
X-ray Halos and Large Grains in the Diffuse Interstellar Medium
Recent observations with dust detectors on board the interplanetary
spacecraft Ulysses and Galileo have recorded a substantial flux of large
interstellar grains with radii between 0.25 and 2.0 mu entering the solar
system from the local interstellar cloud. The most commonly used interstellar
grain size distribution is characterized by a a^-3.5 power law in grain radii
a, and extends to a maximum grain radius of 0.25 mu. The extension of the
interstellar grain size distribution to such large radii will have a major
effect on the median grain size, and on the amount of mass needed to be tied up
in dust for a given visual optical depth. It is therefore important to
investigate whether this population of larger dust particles prevails in the
general interstellar medium, or if it is merely a local phenomenon. The
presence of large interstellar grains can be mainly inferred from their effect
on the intensity and radial profiles of scattering halos around X-ray sources.
In this paper we examine the grain size distribution that gives rise to the
X-ray halo around Nova Cygni 1992. The results of our study confirm the need to
extend the interstellar grain size distribution in the direction of this source
to and possibly beyond 2.0 mu. The model that gives the best fit to the halo
data is characterized by: (1) a grain size distribution that follows an a^-3.5
power law up to 0.50 mu, followed by an a^-4.0 extension from 0.50 mu to 2.0
mu; and (2) silicate and graphite (carbon) dust-to-gas mass ratios of 0.0044
and 0.0022, respectively, consistent with solar abundances constraints.
Additional observations of X-ray halos probing other spatial directions are
badly needed to test the general validity of this result.Comment: 17 pages, incl. 1 figure, accepted for publ. by ApJ Letter
Broadband Meter-Wavelength Observations of Ionospheric Scintillation
Intensity scintillations of cosmic radio sources are used to study
astrophysical plasmas like the ionosphere, the solar wind, and the interstellar
medium. Normally these observations are relatively narrow band. With Low
Frequency Array (LOFAR) technology at the Kilpisj\"arvi Atmospheric Imaging
Receiver Array (KAIRA) station in northern Finland we have observed
scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were
discovered in interstellar scintillations of pulsars, can provide precise
estimates of the distance and velocity of the scattering plasma. Here we report
the first observations of such arcs in the ionosphere and the first broad-band
observations of arcs anywhere, raising hopes that study of the phenomenon may
similarly improve the analysis of ionospheric scintillations. These
observations were made of the strong natural radio source Cygnus-A and covered
the entire 30-250\,MHz band of KAIRA. Well-defined parabolic arcs were seen
early in the observations, before transit, and disappeared after transit
although scintillations continued to be obvious during the entire observation.
We show that this can be attributed to the structure of Cygnus-A. Initial
results from modeling these scintillation arcs are consistent with simultaneous
ionospheric soundings taken with other instruments, and indicate that
scattering is most likely to be associated more with the topside ionosphere
than the F-region peak altitude. Further modeling and possible extension to
interferometric observations, using international LOFAR stations, are
discussed.Comment: 11 pages, 17 figure
Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3−6) or formation rates at 1 nm and 3 nm (J1 and J3); 2) the time delays between [H2SO4] and N3−6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]^2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3−6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3−6 and [H2SO4]. The exponents in the J3/[H2SO4]^n_(J3)-connection were consistently higher than or equal to the exponents in the relation N3−6/[H2SO4]^n_(N36). In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for
Scattering by Interstellar Dust Grains: Optical and Ultraviolet
Scattering and absorption properties at optical and ultraviolet wavelengths
are calculated for an interstellar dust model consisting of carbonaceous grains
and amorphous silicate grains. Polarization as a function of scattering angle
is calculated for selected wavelengths from the IR to the vacuum UV. The
widely-used Henyey-Greenstein phase function provides a good approximation for
the scattering phase function between ~0.4 and 1 micron, but fails to fit the
calculated phase functions at shorter wavelengths and longer wavelengths. A new
analytic phase function is presented. It is exact at long wavelengths, and
provides a good fit to the numerically-calculated phase function for lambda >
0.27um.
Observational determinations of the scattering albedo and show
considerable disagreement, especially in the ultraviolet. Possible reasons for
this are discussed.Comment: ApJ, accepted. 19 pages, 10 figures. This version includes a new
analytic scattering phase function which is an improvement on the
Henyey-Greenstein phase function. Sections on X-ray scattering in previous
version of this astro-ph submission have been relocated to a separate paper
(Draine 2003: astro-ph/0308251
Long-term spot monitoring of the young solar analogue V889 Herculis
Context. Starspots are important manifestations of stellar magnetic activity. By studying their behaviour in young solar analogues, we can unravel the properties of their magnetic cycles. This gives crucial information of the underlying dynamo process. Comparisons with the solar cycle enable us to infer knowledge about how the solar dynamo has evolved during the Sun's lifetime. Aims. Here we study the correlation between photometric brightness variations, spottedness, and mean temperature in V889 Her, a young solar analogue. Our data covers 18 years of spectroscopic and 25 years of photometric observations. Methods. We use Doppler imaging to derive temperature maps from high-resolution spectra. We use the Continuous Period Search method to retrieve mean V-magnitudes from photometric data. Results. Our Doppler imaging maps show a persistent polar spot structure varying in strength. This structure is centred slightly off the rotational pole. The mean temperature derived from the maps shows an overall decreasing trend, as does the photometric mean brightness, until it reaches its minimum around 2017. The filling factor of cool spots, however, shows only a weak tendency to anti-correlate with the decreasing mean brightness. Conclusions. We interpret V889 Her to have entered into a grand maximum in its activity. The clear relation between the mean temperature of the Doppler imaging surface maps and the mean magnitude supports the reliability of the Doppler images. The lack of correlation between the mean magnitude and the spottedness may indicate that bright features in the Doppler images are real.Peer reviewe
Observations of Microwave Continuum Emission from Air Shower Plasmas
We investigate a possible new technique for microwave measurements of
ultra-high energy cosmic ray (UHECR) extensive air showers which relies on
detection of expected continuum radiation in the microwave range, caused by
free-electron collisions with neutrals in the tenuous plasma left after the
passage of the shower. We performed an initial experiment at the AWA (Argonne
Wakefield Accelerator) laboratory in 2003 and measured broadband microwave
emission from air ionized via high energy electrons and photons. A follow-up
experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004
confirmed the major features of the previous AWA observations with better
precision and made additional measurements relevant to the calorimetric
capabilities of the method. Prompted by these results we built a prototype
detector using satellite television technology, and have made measurements
indicating possible detection of cosmic ray extensive air showers. The method,
if confirmed by experiments now in progress, could provide a high-duty cycle
complement to current nitrogen fluorescence observations of UHECR, which are
limited to dark, clear nights. By contrast, decimeter microwave observations
can be made both night and day, in clear or cloudy weather, or even in the
presence of moderate precipitation.Comment: 15 pages, 13 figure
Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H<sub>2</sub>SO<sub>4</sub>]), and particle concentrations (<I>N</I><sub>3–6</sub>) or formation rates at 1 nm and 3 nm (<I>J</i><sub>1</sub> and <I>J</I><sub>3</sub>); 2) the time delays between [H<sub>2</sub>SO<sub>4</sub>] and <I>N</I><sub>3–6</sub> or <I>J</I><sub>3</sub>, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients <I>A</I> and <I>K</I> in relations <I>J</I><sub>1</sub>=<I>A</I>[H<sub>2</sub>SO<sub>4</sub>] and <I>J</I><sub>1</sub>=<I>K</I>[H<sub>2</sub>SO<sub>4</sub>]<sup>2</sup>, respectively; 4) theoretical predictions for <I>J</I><sub>1</sub> and <I>J</I><sub>3</sub> for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, <I>N</I><sub>3–6</sub> or <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were consistently lower than the corresponding delays between <I>N</I><sub>3–6</sub> and [H<sub>2</sub>SO<sub>4</sub>]. The exponents in the <I>J</I><sub>3</sub>∝[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>J3</sub></sup>-connection were consistently higher than or equal to the exponents in the relation <I>N</I><sub>3–6</sub>∝[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>N36</sub></sup>. In the <I>J</I><sub>1</sub> values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The <I>J</I><sub>3</sub> values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for
Cutting and controlled modification of graphene with ion beams
Using atomistic computer simulations, we study how ion irradiation can be
used to alter the morphology of a graphene monolayer by introducing defects of
specific type, and to cut graphene sheets. Based on the results of our
analytical potential molecular dynamics simulations, a kinetic Monte Carlo code
is developed for modelling morphological changes in a graphene monolayer under
irradiation at macroscopic time scales. Impacts of He, Ne, Ar, Kr, Xe and Ga
ions with kinetic energies ranging from tens of eV to 10 MeV and angles of
incidence between 0\circ and 88\circ are studied. Our results provide
microscopic insights into the response of graphene to ion irradiation and can
directly be used for the optimization of graphene cutting and patterning with
focused ion beams
- …