1,867 research outputs found

    Massive photons and Lorentz violation

    Full text link
    All quadratic translation- and gauge-invariant photon operators for Lorentz breakdown are included into the Stueckelberg Lagrangian for massive photons in a generalized \xi-gauge. The corresponding dispersion relation and tree-level propagator are determined exactly, and some leading-order results are derived. The question of how to include such Lorentz-violating effects into a perturbative quantum-field expansion is addressed. Applications of these results within Lorentz-breaking quantum field theories include the regularization of infrared divergences as well as the free propagation of massive vector bosons.Comment: 12 pages, 1 figur

    Vacuum Cherenkov radiation

    Full text link
    Within the classical Maxwell-Chern-Simons limit of the Standard-Model Extension (SME), the emission of light by uniformly moving charges is studied confirming the possibility of a Cherenkov-type effect. In this context, the exact radiation rate for charged magnetic point dipoles is determined and found in agreement with a phase-space estimate under certain assumptions.Comment: 4 pages, REVTeX

    Non-local on-shell field redefinition for the SME

    Get PDF
    This work instigates a study of non-local field mappings within the Lorentz- and CPT-violating Standard-Model Extension (SME). An example of such a mapping is constructed explicitly, and the conditions for the existence of its inverse are investigated. It is demonstrated that the associated field redefinition can remove b-type Lorentz violation from free SME fermions in certain situations. These results are employed to obtain explicit expressions for the corresponding Lorentz-breaking momentum-space eigenspinors and their orthogonality relations.Comment: 12 pages, REVTeX

    Alpha Channeling in a Rotating Plasma

    Full text link
    The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the RF waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.Comment: 4 pages and 3 figure

    Adaptive Tuning of Feedback Gain in Time-Delayed Feedback Control

    Get PDF
    We demonstrate that time-delayed feedback control can be improved by adaptively tuning the feedback gain. This adaptive controller is applied to the stabilization of an unstable fixed point and an unstable periodic orbit embedded in a chaotic attractor. The adaptation algorithm is constructed using the speed-gradient method of control theory. Our computer simulations show that the adaptation algorithm can find an appropriate value of the feedback gain for single and multiple delays. Furthermore, we show that our method is robust to noise and different initial conditions.Comment: 7 pages, 6 figure

    Coherence resonance in a network of FitzHugh-Nagumo systems: interplay of noise, time-delay and topology

    Get PDF
    We systematically investigate the phenomena of coherence resonance in time-delay coupled networks of FitzHugh-Nagumo elements in the excitable regime. Using numerical simulations, we examine the interplay of noise, time-delayed coupling and network topology in the generation of coherence resonance. In the deterministic case, we show that the delay-induced dynamics is independent of the number of nearest neighbors and the system size. In the presence of noise, we demonstrate the possibility of controlling coherence resonance by varying the time-delay and the number of nearest neighbors. For a locally coupled ring, we show that the time-delay weakens coherence resonance. For nonlocal coupling with appropriate time-delays, both enhancement and weakening of coherence resonance are possible

    Quantum nano-electromechanics with electrons, quasiparticles and Cooper pairs: effective bath descriptions and strong feedback effects

    Full text link
    Using a quantum noise approach, we discuss the physics of both normal metal and superconducting single electron transistors (SET) coupled to mechanical resonators. Particular attention is paid to the regime where transport occurs via incoherent Cooper-pair tunneling (either via the Josephson quasiparticle (JQP) or double Josephson quasiparticle (DJQP) process). We show that, surprisingly, the back-action of tunneling Cooper pairs (or superconducting quasiparticles) can be used to significantly cool the oscillator. We also discuss the physical origin of negative damping effects in this system, and how they can lead to a regime of strong electro-mechanical feedback, where despite a weak SET - oscillator coupling, the motion of the oscillator strongly effects the tunneling of the Cooper pairs. We show that in this regime, the oscillator is characterized by an energy-dependent effective temperature. Finally, we discuss the strong analogy between back-action effects of incoherent Cooper-pair tunneling and ponderomotive effects in an optical cavity with a moveable mirror; in our case, tunneling Cooper pairs play the role of the cavity photons.Comment: 27 pages, 7 figures; submitted to the New Journal of Physics focus issue on Nano-electromechanical Systems; error in references correcte
    corecore