2,301 research outputs found

    Dissecting the complex environment of a distant quasar with MUSE

    Get PDF
    High redshift quasars can be used to trace the early growth of massive galaxies and may be triggered by galaxy-galaxy interactions. We present MUSE science verification data on one such interacting system consisting of the well-studied z=3.2 PKS1614+051 quasar, its AGN companion galaxy and bridge of material radiating in Lyalpha between the quasar and its companion. We find a total of four companion galaxies (at least two galaxies are new discoveries), three of which reside within the likely virial radius of the quasar host, suggesting that the system will evolve into a massive elliptical galaxy by the present day. The MUSE data are of sufficient quality to split the extended Lyalpha emission line into narrow velocity channels. In these the gas can be seen extending towards each of the three neighbouring galaxies suggesting that the emission-line gas originates in a gravitational interaction between the galaxies and the quasar host. The photoionization source of this gas is less clear but is probably dominated by the two AGN. The quasar's Lyalpha emission spectrum is double-peaked, likely due to absorbing neutral material at the quasar's systemic redshift with a low column density as no damping wings are present. The spectral profiles of the AGN and bridge's Lyalpha emission are also consistent with absorption at the same redshift indicating this neutral material may extend over > 50 kpc. The fact that the neutral material is seen in the line of sight to the quasar and transverse to it, and the fact that we see the quasar and it also illuminates the emission-line bridge, suggests the quasar radiates isotropically and any obscuring torus is small. These results demonstrate the power of MUSE for investigating the dynamics of interacting systems at high redshift.Comment: 9 pages, 6 figures, published in MNRA

    The Milky Way as a High Redshift Galaxy: The Importance of Thick Disk Formation in Galaxies

    Full text link
    We compare the star-formation history and dynamics of the Milky Way (MW) with the properties of distant disk galaxies. During the first ~4 Gyr of its evolution, the MW formed stars with a high star-formation intensity (SFI), Sigma_SFR~0.6 Msun/yr/kpc2 and as a result, generated outflows and high turbulence in its interstellar medium. This intense phase of star formation corresponds to the formation of the thick disk. The formation of the thick disk is a crucial phase which enables the MW to have formed approximately half of its total stellar mass by z~1 which is similar to "MW progenitor galaxies" selected by abundance matching. This agreement suggests that the formation of the thick disk may be a generic evolutionary phase in disk galaxies. Using a simple energy injection-kinetic energy relationship between the 1-D velocity dispersion and SFI, we can reproduce the average perpendicular dispersion in stellar velocities of the MW with age. This relationship, its inferred evolution, and required efficiency are consistent with observations of galaxies from z~0-3. The high turbulence generated by intense star formation naturally resulted in a thick disk, a chemically well-mixed ISM, and is the mechanism that links the evolution of MW to the observed characteristics of distant disk galaxies.Comment: 5 pages, 4 figures; accepted to ApJ Letter

    The cluster environments of radio loud quasars

    Get PDF
    We have carried out multi-colour imaging of the fields of a statistically complete sample of low-frequency selected radio loud quasars at 0.6<z<1.1, in order to determine the characteristics of their environments. The largest radio sources are located in the field, and smaller steep-spectrum sources are more likely to be found in richer environments, from compact groups through to clusters. This radio-based selection (including source size) of high redshift groups and clusters is a highly efficient method of detecting rich environments at these redshifts. Although our single filter clustering measures agree with those of other workers, we show that these statistics cannot be used reliably on fields individually, colour information is required for this.Comment: 5 pages, 3 figures, contribution to "Tracing Cosmic Evolution with Galaxy Clusters" (Sesto 2001), ASP Conference Serie

    The Physical Properties of LBGs at z>5: Outflows and the "pre-enrichment problem"

    Full text link
    We discuss the properties of Lyman Break galaxies (LBGs) at z>5 as determined from disparate fields covering approximately 500 sq. arcmin. While the broad characteristics of the LBG population has been discussed extensively in the literature, such as luminosity functions and clustering amplitude, we focus on the detailed physical properties of the sources in this large survey (>100 with spectroscopic redshifts). Specifically, we discuss ensemble mass estimates, stellar mass surface densities, core phase space densities, star-formation intensities, characteristics of their stellar populations, etc as obtained from multi-wavelength data (rest-frame UV through optical) for a subsample of these galaxies. In particular, we focus on evidence that these galaxies drive vigorous outflows and speculate that this population may solve the so-called ``pre-enrichment problem''. The general picture that emerges from these studies is that these galaxies, observed about 1 Gyr after the Big Bang, have properties consistent with being the progenitors of the densest stellar systems in the local Universe -- the centers of old bulges and early type galaxies.Comment: 4 pages, to appear in "Pathways Through an Eclectic Universe", J. H. Knappen, T. J. Mahoney, and A. Vazedekis (Eds.), ASP Conf. Ser., 200

    The missing metals problem. III How many metals are expelled from galaxies?

    Get PDF
    [Abridged] We revisit the metal budget at z~2. In the first two papers of this series, we already showed that ~30% (to <60% if extrapolating the LF) of the metals are observed in all z~2.5 galaxies detected in current surveys. Here, we extend our analysis to the metals outside galaxies, i.e. in intergalactic medium (IGM), using observational data and analytical calculations. Our results for the two are strikingly similar: (1) Observationally, we find that, besides the small (5%) contribution of DLAs, the forest and sub-DLAs contribute subtantially to make <30--45% of the metal budget, but neither of these appear to be sufficient to close the metal budget. The forest accounts for 15--30% depending on the UV background, and sub-DLAs for >2% to <17% depending on the ionization fraction. Together, the `missing metals' problem is substantially eased. (2) We perform analytical calculations based on the effective yield--mass relation. At z=2, we find that the method predicts that 2$--50% of the metals have been ejected from galaxies into the IGM, consistent with the observations. The metal ejection is predominantly by L<1/3L_B^*(z=2) galaxies, which are responsible for 90% the metal enrichment, while the 50 percentile is at L~1/10L^*_B(z=2). As a consequence, if indeed 50% of the metals have been ejected from galaxies, 3--5 bursts of star formation are required per galaxy prior to z=2. The ratio between the mass of metals outside galaxies to those in stars has changed from z=2 to z=0: it was 2:1 or 1:1 and is now 1:8 or 1:9. This evolution implies that a significant fraction of the IGM metals will cool and fall back into galaxies.Comment: 18pages, MNRAS, in press; small changes to match proofs; extended version with summary tabl

    A Parkes half-Jansky sample of GPS galaxies

    Get PDF
    This paper describes the selection of a new southern/equatorial sample of Gigahertz Peaked Spectrum (GPS) radio galaxies, and subsequent optical CCD imaging and spectroscopic observations using the ESO 3.6m telescope. The sample consists of 49 sources with -4020 degrees, and S(2.7GHz)>0.5 Jy, selected from the Parkes PKSCAT90 survey. About 80% of the sources are optically identified, and about half of the identifications have available redshifts. The R-band Hubble diagram and evolution of the host galaxies of GPS sources are reviewed.Comment: Latex, 12 pages, 8 figures, accepted for publication in MNRA

    The detection of FIR emission from high redshift star-forming galaxies in the ECDF-S

    Full text link
    ABRIDGED: We have used the LABOCA Survey of the ECDF-S (LESS) to investigate rest-frame FIR emission from typical SF systems (LBGs) at redshift 3, 4, and 5. We initially concentrate on LBGs at z~3 and select three subsamples on stellar mass, extinction corrected SF and rest-frame UV-magnitude. We produce composite 870micron images of the typical source in our subsamples, obtaining ~4sigma detections and suggesting a correlation between FIR luminosity and stellar mass. We apply a similar procedure to our full samples at z~3, 4, 4.5 and 5 and do not obtain detections - consistent with a simple scaling between FIR luminosity and stellar mass. In order to constrain the FIR SED of these systems we explore their emission at multiple wavelengths spanning the peak of dust emission at z~3 using the Herschel SPIRE observations of the field. We obtain detections at multiple wavelengths for both our stellar mass and UV-magnitude selected samples, and find a best-fit SED with T_dust in the ~33-41K range. We calculate L_FIR, obscured SFRs and M_dust, and find that a significant fraction of SF in these systems is obscured. Interestingly, our extinction corrected SFR sample does not display the large FIR fluxes predicted from its red UV-spectral slope. This suggests that the method of assuming an intrinsic UV-slope and correcting for dust attenuation may be invalid for this sample - and that these are not in fact the most actively SF systems. All of our z~3 samples fall on the `main sequence' of SF galaxies at z~3 and our detected subsamples are likely to represent the high obscuration end of LBGs at their epoch. We compare the FIR properties of our subsamples with various other populations, finding that our stellar mass selected sample shows similar FIR characteristics to SMGs at the same epoch and therefore potentially represents the low L_FIR end of the high redshift FIR luminosity function.Comment: 18 pages, 10 figure, MNRAS accepted, corrected typos, acknowledgements adde
    corecore