4,318 research outputs found
Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
Far Ultraviolet Spectroscopic Explorer observations are presented for
WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a
distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40
per 20 km/s resolution element and cover the wavelength range 905-1187 \AA.
LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II,
N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an
ionized nitrogen fraction of > 0.23. We determine the ratio (2). Assuming a standard interstellar
oxygen abundance, we derive . Using the
value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I
ratio is (2).Comment: accepted for publication in the ApJ
The COS/UVES Absorption Survey of the Magellanic Stream: II. Evidence for a complex enrichment history of the Stream from the Fairall 9 sightline
We present a multi-wavelength study of the Magellanic Stream (MS), a massive
gaseous structure in the Local Group that is believed to represent material
stripped from the Magellanic Clouds. We use ultraviolet, optical and radio data
obtained with HST/COS, VLT/UVES, FUSE, GASS, and ATCA to study metal abundances
and physical conditions in the Stream toward the quasar Fairall 9. Line
absorption in the MS from a large number of metal ions and from molecular
hydrogen is detected in up to seven absorption components, indicating the
presence of multi-phase gas. From the analysis of unsaturated SII absorption,
in combination with a detailed photoionization model, we obtain a surprisingly
high alpha abundance in the Stream toward Fairall 9 of [S/H]=-0.30pm0.04 (0.5
solar). This value is 5 times higher than what is found along other MS
sightlines based on similar COS/UVES data sets. In contrast, the measured
nitrogen abundance is found to be substantially lower ([N/H]=-1.15pm0.06),
implying a very low [N/alpha] ratio of -0.85 dex. The substantial differences
in the chemical composition of MS toward Fairall 9 compared to other sightlines
point toward a complex enrichment history of the Stream. We favour a scenario,
in which the gas toward Fairall 9 was locally enriched with alpha elements by
massive stars and then was separated from the Magellanic Clouds before the
delayed nitrogen enrichment from intermediate-mass stars could set in. Our
results support (but do not require) the idea that there is a metal-enriched
filament in the Stream toward Fairall 9 that originates in the LMC.Comment: Accepted for publication in ApJ; 20 pages, 11 figure
Can captive orangutans (Pongo pygmaeus abelii) be coaxed into cumulative build-up of techniques?
While striking cultural variation in behavior from one site to another has been described in chimpanzees and orangutans, cumulative culture might be unique to humans. Captive chimpanzees were recently found to be rather conservative, sticking to the technique they had mastered, even after more effective alternatives were demonstrated. Behavioral flexibility in problem solving, in the sense of acquiring new solutions after having learned another one earlier, is a vital prerequisite for cumulative build-up of
techniques. Here, we experimentally investigate whether captive orangutans show such flexibility, and if so, whether they show techniques that cumulatively build up (ratchet) on previous ones after conditions of the task are changed. We provided nine Sumatran orangutans (Pongo pygmaeus abelii) with two types of transparent tubes partly filled with syrup, along with potential tools such as sticks, twigs, wood wool and paper. In the first phase, the orangutans could reach inside the tubes with their hands (Regular Condition), but in the following phase, tubes had been made too narrow for their hands to fit in (Restricted Condition 1), or in addition the setup lacked their favorite materials (Restricted Condition 2). The orangutans showed high behavioral flexibility, applying nine different techniques under the regular condition in total. Individuals abandoned preferred techniques and switched to different techniques under restricted conditions when this was advantageous. We show for two of these techniques how they cumulatively built up on earlier ones. This suggests that the near-absence of cumulative culture in wild orangutans is not due to a lack of flexibility when existing solutions to tasks are made impossible
An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way's circumgalactic medium and the Local Group
To characterize the absorption properties of this circumgalactic medium (CGM)
and its relation to the LG we present the so-far largest survey of metal
absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet
(UV) spectra of extragalactic background sources. The UV data are obtained with
the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST)
and are supplemented by 21 cm radio observations of neutral hydrogen. Along 270
sightlines we measure metal absorption in the lines of SiII, SiIII, CII, and
CIV and associated HI 21 cm emission in HVCs in the velocity range
|v_LSR|=100-500 km s^-1. With this unprecedented large HVC sample we were able
to improve the statistics on HVC covering fractions, ionization conditions,
small-scale structure, CGM mass, and inflow rate. For the first time, we
determine robustly the angular two point correlation function of the
high-velocity absorbers, systematically analyze antipodal sightlines on the
celestial sphere, and compare the absorption characteristics with that of
Damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of
the LG. Our study demonstrates that the Milky Way CGM contains sufficient
gaseous material to maintain the Galactic star-formation rate at its current
level. We show that the CGM is composed of discrete gaseous structures that
exhibit a large-scale kinematics together with small-scale variations in
physical conditions. The Magellanic Stream clearly dominates both the cross
section and mass flow of high-velocity gas in the Milky Way's CGM. The possible
presence of high-velocity LG gas underlines the important role of the local
cosmological environment in the large-scale gas-circulation processes in and
around the Milky Way (abridged).Comment: 37 pages, 25 figures, 8 tables, accepted for publication in A&
Hamiltonian Relaxation
Due to the complexity of the required numerical codes, many of the new
formulations for the evolution of the gravitational fields in numerical
relativity are not tested on binary evolutions. We introduce in this paper a
new testing ground for numerical methods based on the simulation of binary
neutron stars. This numerical setup is used to develop a new technique, the
Hamiltonian relaxation (HR), that is benchmarked against the currently most
stable simulations based on the BSSN method. We show that, while the length of
the HR run is somewhat shorter than the equivalent BSSN simulation, the HR
technique improves the overall quality of the simulation, not only regarding
the satisfaction of the Hamiltonian constraint, but also the behavior of the
total angular momentum of the binary. The latest quantity agrees well with
post-Newtonian estimations for point-mass binaries in circular orbits.Comment: More detailed description of the numerical implementation added and
some typos corrected. Version accepted for publication in Class. and Quantum
Gravit
Relativistic MHD and black hole excision: Formulation and initial tests
A new algorithm for solving the general relativistic MHD equations is
described in this paper. We design our scheme to incorporate black hole
excision with smooth boundaries, and to simplify solving the combined Einstein
and MHD equations with AMR. The fluid equations are solved using a finite
difference Convex ENO method. Excision is implemented using overlapping grids.
Elliptic and hyperbolic divergence cleaning techniques allow for maximum
flexibility in choosing coordinate systems, and we compare both methods for a
standard problem. Numerical results of standard test problems are presented in
two-dimensional flat space using excision, overlapping grids, and elliptic and
hyperbolic divergence cleaning.Comment: 22 pages, 8 figure
AMR, stability and higher accuracy
Efforts to achieve better accuracy in numerical relativity have so far
focused either on implementing second order accurate adaptive mesh refinement
or on defining higher order accurate differences and update schemes. Here, we
argue for the combination, that is a higher order accurate adaptive scheme.
This combines the power that adaptive gridding techniques provide to resolve
fine scales (in addition to a more efficient use of resources) together with
the higher accuracy furnished by higher order schemes when the solution is
adequately resolved. To define a convenient higher order adaptive mesh
refinement scheme, we discuss a few different modifications of the standard,
second order accurate approach of Berger and Oliger. Applying each of these
methods to a simple model problem, we find these options have unstable modes.
However, a novel approach to dealing with the grid boundaries introduced by the
adaptivity appears stable and quite promising for the use of high order
operators within an adaptive framework
Mode coupling in the nonlinear response of black holes
We study the properties of the outgoing gravitational wave produced when a
non-spinning black hole is excited by an ingoing gravitational wave.
Simulations using a numerical code for solving Einstein's equations allow the
study to be extended from the linearized approximation, where the system is
treated as a perturbed Schwarzschild black hole, to the fully nonlinear regime.
Several nonlinear features are found which bear importance to the data analysis
of gravitational waves. When compared to the results obtained in the linearized
approximation, we observe large phase shifts, a stronger than linear generation
of gravitational wave output and considerable generation of radiation in
polarization states which are not found in the linearized approximation. In
terms of a spherical harmonic decomposition, the nonlinear properties of the
harmonic amplitudes have simple scaling properties which offer an economical
way to catalog the details of the waves produced in such black hole processes.Comment: 17 pages, 20 figures, abstract and introduction re-writte
The coupling with relativistic heavy quarks
We report on a calculation of the coupling in lattice QCD. The
strong matrix element is directly related to the
leading order low-energy constant in heavy meson chiral perturbation theory
(HMPT) for -mesons. We carry out our calculation directly at the
-quark mass using a non-perturbatively tuned clover action that controls
discretisation effects of order and for all . Our
analysis is performed on RBC/UKQCD gauge configurations using domain wall
fermions and the Iwasaki gauge action at two lattice spacings of
GeV, GeV, and unitary pion masses down to 290
MeV. We achieve good statistical precision and control all systematic
uncertainties, giving a final result for the HMPT coupling in the continuum and at the physical light-quark
masses. This is the first calculation performed directly at the physical
-quark mass and lies in the region one would expect from carrying out an
interpolation between previous results at the charm mass and at the static
point.Comment: 7 pages, 2 figures, presented at the 31st International Symposium on
Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
- …