3,749 research outputs found

    The Magellanic System: What have we learnt from FUSE?

    Full text link
    I review some of the findings on the Magellanic System produced by the Far Ultraviolet Spectroscopic Explorer (FUSE) during and after its eight years of service. The Magellanic System with its high-velocity complexes provides a nearby laboratory that can be used to characterize phenomena that involve interaction between galaxies, infall and outflow of gas and metals in galaxies. These processes are crucial for understanding the evolution of galaxies and the intergalactic medium. Among the FUSE successes I highlight are the coronal gas about the LMC and SMC, and beyond in the Stream, the outflows from these galaxies, the discovery of molecules in the diffuse gas of the Stream and the Bridge, an extremely sub-solar and sub-SMC metallicity of the Bridge, and a high-velocity complex between the Milky Way and the Clouds.Comment: A contributed paper to the FUSE Annapolis Conference "Future Directions in Ultraviolet Spectroscopy.", 5 pages. To appear as an AIP Conference Proceedin

    Low Redshift Intergalactic Absorption Lines in the Spectrum of HE0226-4110

    Full text link
    We present an analysis of the FUSE and STIS E140M spectra of HE0226-4110 (z=0.495). We detect 56 Lyman absorbers and 5 O VI absorbers. The number of intervening O VI systems per unit redshift with W>50 m\AA is dN(O VI)/dz~ 11. The O VI systems unambiguously trace hot gas only in one case. For the 4 other O VI systems, photoionization and collisional ionization models are viable options to explain the observed column densities of the O VI and the other ions. If the O VI systems are mostly photoionized, only a fraction of the observed O VI will contribute to the baryonic density of the warm-hot ionized medium (WHIM) along this line of sight. Combining our results with previous ones, we show that there is a general increase of N(O VI) with increasing b(O VI). Cooling flow models can reproduce the N-b distribution but fail to reproduce the observed ionic ratios. A comparison of the number of O I, O II, O III, O IV, and O VI systems per unit redshift show that the low-z IGM is more highly ionized than weakly ionized. We confirm that photoionized O VI systems show a decreasing ionization parameter with increasing H I column density. O VI absorbers with collisional ionization/photoionization degeneracy follow this relation, possibly suggesting that they are principally photoionized. We find that the photoionized O VI systems in the low redshift IGM have a median abundance of 0.3 solar. We do not find additional Ne VIII systems other than the one found by Savage et al., although our sensitivity should have allowed the detection of Ne VIII in O VI systems at T~(0.6-1.3)x10^6 K (if CIE applies). Since the bulk of the WHIM is believed to be at temperatures T>10^6 K, the hot part of the WHIM remains to be discovered with FUV--EUV metal-line transitions.Comment: Accepted for publication in the ApJS. Full resolution figures available at http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJS63975.preprint.pd

    Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    Full text link
    Far Ultraviolet Spectroscopic Explorer observations are presented for WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40 per 20 km/s resolution element and cover the wavelength range 905-1187 \AA. LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II, N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an ionized nitrogen fraction of > 0.23. We determine the ratio D/O=(3.9±1.01.3)×102D/O = (3.9 \pm ^{1.3}_{1.0})\times 10^{-2} (2σ\sigma). Assuming a standard interstellar oxygen abundance, we derive D/H1.3×105{\rm D/H} \approx 1. 3 \times 10^{-5}. Using the value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I ratio is (3.3±0.81.0)×101(3.3 \pm ^{1.0}_{0.8})\times 10^{-1} (2σ\sigma).Comment: accepted for publication in the ApJ

    3D simulations of Einstein's equations: symmetric hyperbolicity, live gauges and dynamic control of the constraints

    Full text link
    We present three-dimensional simulations of Einstein equations implementing a symmetric hyperbolic system of equations with dynamical lapse. The numerical implementation makes use of techniques that guarantee linear numerical stability for the associated initial-boundary value problem. The code is first tested with a gauge wave solution, where rather larger amplitudes and for significantly longer times are obtained with respect to other state of the art implementations. Additionally, by minimizing a suitably defined energy for the constraints in terms of free constraint-functions in the formulation one can dynamically single out preferred values of these functions for the problem at hand. We apply the technique to fully three-dimensional simulations of a stationary black hole spacetime with excision of the singularity, considerably extending the lifetime of the simulations.Comment: 21 pages. To appear in PR

    The discrete energy method in numerical relativity: Towards long-term stability

    Full text link
    The energy method can be used to identify well-posed initial boundary value problems for quasi-linear, symmetric hyperbolic partial differential equations with maximally dissipative boundary conditions. A similar analysis of the discrete system can be used to construct stable finite difference equations for these problems at the linear level. In this paper we apply these techniques to some test problems commonly used in numerical relativity and observe that while we obtain convergent schemes, fast growing modes, or ``artificial instabilities,'' contaminate the solution. We find that these growing modes can partially arise from the lack of a Leibnitz rule for discrete derivatives and discuss ways to limit this spurious growth.Comment: 18 pages, 22 figure

    Mode coupling in the nonlinear response of black holes

    Get PDF
    We study the properties of the outgoing gravitational wave produced when a non-spinning black hole is excited by an ingoing gravitational wave. Simulations using a numerical code for solving Einstein's equations allow the study to be extended from the linearized approximation, where the system is treated as a perturbed Schwarzschild black hole, to the fully nonlinear regime. Several nonlinear features are found which bear importance to the data analysis of gravitational waves. When compared to the results obtained in the linearized approximation, we observe large phase shifts, a stronger than linear generation of gravitational wave output and considerable generation of radiation in polarization states which are not found in the linearized approximation. In terms of a spherical harmonic decomposition, the nonlinear properties of the harmonic amplitudes have simple scaling properties which offer an economical way to catalog the details of the waves produced in such black hole processes.Comment: 17 pages, 20 figures, abstract and introduction re-writte

    AMR, stability and higher accuracy

    Full text link
    Efforts to achieve better accuracy in numerical relativity have so far focused either on implementing second order accurate adaptive mesh refinement or on defining higher order accurate differences and update schemes. Here, we argue for the combination, that is a higher order accurate adaptive scheme. This combines the power that adaptive gridding techniques provide to resolve fine scales (in addition to a more efficient use of resources) together with the higher accuracy furnished by higher order schemes when the solution is adequately resolved. To define a convenient higher order adaptive mesh refinement scheme, we discuss a few different modifications of the standard, second order accurate approach of Berger and Oliger. Applying each of these methods to a simple model problem, we find these options have unstable modes. However, a novel approach to dealing with the grid boundaries introduced by the adaptivity appears stable and quite promising for the use of high order operators within an adaptive framework

    Dominance of a single topological sector in gauge theory on non-commutative geometry

    Full text link
    We demonstrate a striking effect of non-commutative (NC) geometry on topological properties of gauge theory by Monte Carlo simulations. We study 2d U(1) NC gauge theory for various boundary conditions using a new finite-matrix formulation proposed recently. We find that a single topological sector dictated by the boundary condition dominates in the continuum limit. This is in sharp contrast to the results in commutative space-time based on lattice gauge theory, where all topological sectors appear with certain weights in the continuum limit. We discuss possible implications of this effect in the context of string theory compactifications and in field theory contexts.Comment: 16 pages, 27 figures, typos correcte

    On "many black hole" space-times

    Full text link
    We analyze the horizon structure of families of space times obtained by evolving initial data sets containing apparent horizons with several connected components. We show that under certain smallness conditions the outermost apparent horizons will also have several connected components. We further show that, again under a smallness condition, the maximal globally hyperbolic development of the many black hole initial data constructed by Chrusciel and Delay, or of hyperboloidal data of Isenberg, Mazzeo and Pollack, will have an event horizon, the intersection of which with the initial data hypersurface is not connected. This justifies the "many black hole" character of those space-times.Comment: several graphic file

    A simple proof of the Markoff conjecture for prime powers

    Full text link
    We give a simple and independent proof of the result of Jack Button and Paul Schmutz that the Markoff conjecture on the uniqueness of the Markoff triples (a,b,c), where a, b, and c are in increasing order, holds whenever cc is a prime power.Comment: 5 pages, no figure
    corecore