157 research outputs found

    Antisemitismus in der Popkultur

    Get PDF
    ANTISEMITISMUS IN DER POPKULTUR Antisemitismus in der Popkultur / Kappl, Eva (Rights reserved) ( -

    Critical Role of Perforin-dependent CD8+ T Cell Immunity for Rapid Protective Vaccination in a Murine Model for Human Smallpox

    Get PDF
    Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination

    Hematocrit Self-Testing in Patients with Polycythemia Vera and Other Hematological Conditions: Assessing the Accuracy of the StatStrip Xpress® 2 LAC/Hb/Hct Device and User Opinion about the Device in Real-World Clinical Practice.

    Get PDF
    Maintaining hematocrit (Hct) levels below 45% can reduce morbidity and mortality in patients with polycythemia vera (PV). A device that patients can use to self-monitor Hct levels could enable timely interventions if Hct levels increase above 45%, and could improve quality of life (QoL). This study evaluated the accuracy of the StatStrip Xpress® 2 LAC/Hb/Hct meter (Hb/Hct meter) when used by healthcare professionals (HCPs) or patients in clinical practice. Blood samples from 68 visits for 60 patients with PV or other hematological conditions were collected and analyzed by HCPs using a laboratory hematological analyzer, and by patients (self-test) and HCPs (professional test) using the Hb/Hct meter at two Swiss centers. Accuracy was assessed as the mean difference in readings between two users/methods (mdiff, 90% confidence interval; Spearman correlation [r]). The Hct values were similar between the professional test and analyzer (n = 66 comparisons, mdiff = 0.1% [-0.5 to 0.8]; r = 0.95, p < 0.001), the self-test and professional test (n = 62 comparisons, mdiff = -0.2% [-1.1 to 0.7]; r = 0.93, p < 0.001), and the self-test and analyzer (n = 63 comparisons, mdiff = 0.0% [-0.8 to 0.7]; r = 0.94, p < 0.001). The hemoglobin values across users/methods were also similar. Reporting their opinion on the Hb/Hct meter at visit 1, 100% of the patients found it easy to use, and 97% were willing to use it at home. Of the patients with PV, approximately 71% and 56%, respectively, stated that they would feel safer using a self-testing device, and that it would improve their QoL. These findings demonstrate the potential of the Hb/Hct meter for HCP and patient use in real-world settings

    Divergent dynamics of inflammatory mediators and multiplex PCRs during airway infection in cystic fibrosis patients and healthy controls: Serial upper airway sampling by nasal lavage

    Get PDF
    Background In cystic fibrosis (CF), acute respiratory exacerbations critically enhance pulmonary destruction. Since these mainly occur outside regular appointments, they remain unexplored. We previously elaborated a protocol for home-based upper airway (UAW) sampling obtaining nasal-lavage fluid (NLF), which, in contrast to sputum, does not require immediate processing. The aim of this study was to compare UAW inflammation and pathogen colonization during stable phases and exacerbations in CF patients and healthy controls. Methods Initially, we obtained NLF by rinsing 10 ml of isotonic saline/nostril during stable phases. During exacerbations, subjects regularly collected NLF at home. CF patients directly submitted one aliquot for microbiological cultures. The remaining samples were immediately frozen until transfer on ice to our clinic, where PCR analyses were performed and interleukin (IL)-1β/IL-6/IL-8, neutrophil elastase (NE), matrix metalloproteinase (MMP)-9, and tissue inhibitor of metalloproteinase (TIMP)-1 were assessed. Results Altogether, 49 CF patients and 38 healthy controls (HCs) completed the study, and 214 NLF samples were analyzed. Of the 49 CF patients, 20 were at least intermittently colonized with P. aeruginosa and received azithromycin and/or inhaled antibiotics as standard therapy. At baseline, IL-6 and IL-8 tended to be elevated in CF compared to controls. During infection, inflammatory mediators increased in both cohorts, reaching significance only for IL-6 in controls (p=0.047). Inflammatory responses tended to be higher in controls [1.6-fold (NE) to 4.4-fold (MMP-9)], while in CF, mediators increased only moderately [1.2-1.5-fold (IL-6/IL-8/NE/TIMP-1/MMP-9)]. Patients receiving inhalative antibiotics or azithromycin (n=20 and n=15, respectively) revealed lower levels of IL-1β/IL-6/IL-8 and NE during exacerbation compared to CF patients not receiving those antibiotics. In addition, CF patients receiving azithromycin showed MMP-9 levels significantly lower than CF patients not receiving azithromycin at stable phase and exacerbation. Altogether, rhinoviruses were the most frequently detected virus, detected at least once in n=24 (49.0%) of the 49 included pwCF and in n=26 (68.4%) of the 38 healthy controls over the 13-month duration of the study. Remarkably, during exacerbation, rhinovirus detection rates were significantly higher in the HC group compared to those in CF patients (65.8% vs. 22.4%; p<0.0001). Conclusion Non-invasive and partially home-based UAW sampling opens new windows for the assessment of inflammation and pathogen colonization in the unified airway system

    Everolimus-Induced Immune Effects after Heart Transplantation: A Possible Tool for Clinicians to Monitor Patients at Risk for Transplant Rejection

    Get PDF
    Background: Patients treated with an inhibitor of the mechanistic target of rapamycin (mTORI) in a calcineurin inhibitor (CNI)-free immunosuppressive regimen after heart transplantation (HTx) show a higher risk for transplant rejection. We developed an immunological monitoring tool that may improve the identification of mTORI-treated patients at risk for rejection. Methods: Circulating dendritic cells (DCs) and regulatory T cells (Tregs) were analysed in 19 mTORI- and 20 CNI-treated HTx patients by flow cytometry. Principal component and cluster analysis were used to identify patients at risk for transplant rejection. Results: The percentages of total Tregs (p = 0.02) and CD39+ Tregs (p = 0.05) were higher in mTORI-treated patients than in CNI-treated patients. The principal component analysis revealed that BDCA1+, BDCA2+ and BDCA4+ DCs as well as total Tregs could distinguish between non-rejecting and rejecting mTORI-treated patients. Most mTORI-treated rejectors showed higher levels of BDCA2+ and BDCA4+ plasmacytoid DCs and lower levels of BDCA1+ myeloid DCs and Tregs than mTORI non-rejectors. Conclusion: An mTORI-based immunosuppressive regimen induced a sufficient, tolerance-promoting reaction in Tregs, but an insufficient, adverse effect in DCs. On the basis of patient-specific immunological profiles, we established a flow cytometry-based monitoring tool that may be helpful in identifying patients at risk for rejection

    Selective hepatitis B and D virus entry inhibitors from the group of pentacyclic lupane-type betulin-derived triterpenoids

    Get PDF
    Current treatment options against hepatitis B and D virus (HBV/HDV) infections have only limited curative effects. Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as the high-affinity hepatic receptor for both viruses in 2012 enables target-based development of HBV/HDV cell-entry inhibitors. Many studies already identified appropriate NTCP inhibitors. However, most of them interfere with NTCP's physiological function as a hepatic bile acid transporter. To overcome this drawback, the present study aimed to find compounds that specifically block HBV/HDV binding to NTCP without affecting its transporter function. A novel assay was conceptualized to screen for both in parallel; virus binding to NTCP (measured via binding of a preS1-derived peptide of the large HBV/HDV envelope protein) and bile acid transport via NTCP. Hits were subsequently validated by in vitro HDV infection studies using NTCP-HepG2 cells. Derivatives of the birch-derived pentacyclic lupane-type triterpenoid betulin revealed clear NTCP inhibitory potency and selectivity for the virus receptor function of NTCP. Best performing compounds in both aspects were 2, 6, 19, and 25. In conclusion, betulin derivatives show clear structure-activity relationships for potent and selective inhibition of the HBV/HDV virus receptor function of NTCP without tackling its physiological bile acid transport function and therefore are promising drug candidates.Peer reviewe

    Immune Monitoring Assay for Extracorporeal Photopheresis Treatment Optimization After Heart Transplantation

    Get PDF
    Background: Extracorporeal photopheresis (ECP) induces immunological changes that lead to a reduced risk of transplant rejection. The aim of the present study was to determine optimum conditions for ECP treatment by analyzing a variety of toleranceinducing immune cells to optimize the treatment. Methods: Ten ECP treatments were applied to each of 17 heart-transplant patients from month 3 to month 9 post-HTx. Blood samples were taken at baseline, three times during treatment, and four months after the last ECP treatment. The abundance of subsets of tolerance-inducing regulatory T cells (Tregs) and dendritic cells (DCs) in the samples was determined by flow cytometry. A multivariate statistical model describing the immunological status of rejection-free heart transplanted patients was used to visualize the patient-specific immunological improvement induced by ECP. Results: All BDCA+ DC subsets (BDCA1+ DCs: p < 0.01, BDCA2+ DCs: p < 0.01, BDCA3+ DCs: p < 0.01, BDCA4+ DCs: p < 0.01) as well as total Tregs (p < 0.01) and CD39+ Tregs (p < 0.01) increased during ECP treatment, while CD62L+ Tregs decreased (p < 0.01). The cell surface expression level of BDCA1 (p < 0.01) and BDCA4 (p < 0.01) on DCs as well as of CD120b (p < 0.01) on Tregs increased during the study period, while CD62L expression on Tregs decreased significantly (p = 0.04). The cell surface expression level of BDCA2 (p = 0.47) and BDCA3 (p = 0.22) on DCs as well as of CD39 (p = 0.14) and CD147 (p = 0.08) on Tregs remained constant during the study period. A cluster analysis showed that ECP treatment led to a sustained immunological improvement. Conclusions: We developed an immune monitoring assay for ECP treatment after heart transplantation by analyzing changes in tolerance-inducing immune cells. This assay allowed differentiation of patients who did and did not show immunological improvement. Based on these results, we propose classification criteria that may allow optimization of the duration of ECP treatment

    Identification of Novel HBV/HDV Entry Inhibitors by Pharmacophore- and QSAR-Guided Virtual Screening

    Get PDF
    The hepatic bile acid transporter Na+/taurocholate co-transporting polypeptide (NTCP) was identified in 2012 as the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Since then, this carrier has emerged as promising drug target for HBV/HDV virus entry inhibitors, but the synthetic peptide Hepcludex® of high molecular weight is the only approved HDV entry inhibitor so far. The present study aimed to identify small molecules as novel NTCP inhibitors with anti-viral activity. A ligand-based bioinformatic approach was used to generate and validate appropriate pharmacophore and QSAR (quantitative structure–activity relationship) models. Half-maximal inhibitory concentrations (IC50) for binding inhibition of the HBV/HDV-derived preS1 peptide (as surrogate parameter for virus binding to NTCP) were determined in NTCP-expressing HEK293 cells for 150 compounds of different chemical classes. IC50 values ranged from 2 µM up to >1000 µM. The generated pharmacophore and QSAR models were used for virtual screening of drug-like chemicals from the ZINC15 database (~11 million compounds). The 20 best-performing compounds were then experimentally tested for preS1-peptide binding inhibition in NTCP-HEK293 cells. Among them, four compounds were active and revealed experimental IC50 values for preS1-peptide binding inhibition of 9, 19, 20, and 35 µM, which were comparable to the QSAR-based predictions. All these compounds also significantly inhibited in vitro HDV infection of NTCP-HepG2 cells, without showing any cytotoxicity. The best-performing compound in all assays was ZINC000253533654. In conclusion, the present study demonstrates that virtual compound screening based on NTCP-specific pharmacophore and QSAR models can predict novel active hit compounds for the development of HBV/HDV entry inhibitors

    Identification of Novel HBV/HDV Entry Inhibitors by Pharmacophore- and QSAR-Guided Virtual Screening

    Get PDF
    The hepatic bile acid transporter Na+/taurocholate co-transporting polypeptide (NTCP) was identified in 2012 as the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Since then, this carrier has emerged as promising drug target for HBV/HDV virus entry inhibitors, but the synthetic peptide Hepcludex® of high molecular weight is the only approved HDV entry inhibitor so far. The present study aimed to identify small molecules as novel NTCP inhibitors with anti-viral activity. A ligand-based bioinformatic approach was used to generate and validate appropriate pharmacophore and QSAR (quantitative structure–activity relationship) models. Half-maximal inhibitory concentrations (IC50) for binding inhibition of the HBV/HDV-derived preS1 peptide (as surrogate parameter for virus binding to NTCP) were determined in NTCP-expressing HEK293 cells for 150 compounds of different chemical classes. IC50 values ranged from 2 µM up to >1000 µM. The generated pharmacophore and QSAR models were used for virtual screening of drug-like chemicals from the ZINC15 database (~11 million compounds). The 20 best-performing compounds were then experimentally tested for preS1-peptide binding inhibition in NTCP-HEK293 cells. Among them, four compounds were active and revealed experimental IC50 values for preS1-peptide binding inhibition of 9, 19, 20, and 35 µM, which were comparable to the QSAR-based predictions. All these compounds also significantly inhibited in vitro HDV infection of NTCP-HepG2 cells, without showing any cytotoxicity. The best-performing compound in all assays was ZINC000253533654. In conclusion, the present study demonstrates that virtual compound screening based on NTCP-specific pharmacophore and QSAR models can predict novel active hit compounds for the development of HBV/HDV entry inhibitors
    • …
    corecore