549 research outputs found

    GLORIA - A globally representative hyperspectral \u3ci\u3ein situ\u3c/i\u3e dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1nm intervals within the 350 to 900nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll α, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring

    Multi-inlet migration modeling for navigation channel management in Tabusintac Bay, Eastern Canada

    Get PDF
    In New Brunswick, Atlantic Canada, Tabusintac Bay’s multiple tidal inlets meander through narrow barrier islands and are prone to large storm-induced shifts, making navigation hazardous. A multi-evidence assessment comprised of air-photo analysis, field observations and modeling was undertaken to understand the system and recommend sustainable dredging strategies and/or engineering alternatives. The modeling relied on a combination of simple analytical methods for tidal inlet stability, and complex morphological modeling to project the evolution of the nearshore bathymetry. The study recommended reassigning dredging efforts to a new inlet projected to grow and have better stability. Observations two years after the initial modeling effort indicate that the morphological evolution is consistent with the simulation results, and allowed lowered maintenance dredging requirements. This study illustrates how such a multi-evidence assessment of complex coastal dynamics can concretely guide efforts to reduce maintenance dredging and improve safety at sea

    Author Correction: GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    Correction to: Scientific Data https://doi.org/10.1038/s41597-023-01973-y, published online 16 February 2023. An author of the paper was omitted in the original version (Ted Conroy, University of Waikato, New Zealand). This has been corrected in the pdf and HTML versions of the paper, and the associated metadata

    Groundwater-surface water interaction - A Lake-Modeller's conceptual view

    Get PDF
    This article explores the groundwater-surface water interaction from a conceptual point of view

    The Color of Water from Space: A Case Study for Italian Lakes from Sentinel-2

    Get PDF
    Lakes are inestimable renewable natural resources that are under significant pressure by human activities. Monitoring lakes regularly is necessary to understand their dynamics and the drivers of these dynamics to support effective management. Remote sensing by satellite sensors offers a significant opportunity to increase the spatiotemporal coverage of environmental monitoring programs for inland waters. Lake color is a water quality attribute that can be remotely sensed and is independent of the sensor specifications and water type. In this study we used the Multispectral Imager (MSI) on two Sentinel-2 satellites to determine the color of water of 170 Italian lakes during two periods in 2017. Overall, most of the lakes appeared blue in spring and green-yellow in late summer, and in particular, we confirm a blue-water status of the largest lakes in the subalpine ecoregion. The color and its seasonality are consistent with characteristics determined by geomorphology and primary drivers of water quality. This suggests that information about the color of the lakes can contribute to synoptic assessments of the trophic status of lakes. Further ongoing research efforts are focused to extend the mapping over multiple years

    Colour classification of 1486 lakes across a wide range of optical water types

    Get PDF
    Remote sensing by satellite-borne sensors presents a significant opportunity to enhance the spatio-temporal coverage of environmental monitoring programmes for lakes, but the estimation of classic water quality attributes from inland water bodies has not reached operational status due to the difficulty of discerning the spectral signatures of optically active water constituents. Determination of water colour, as perceived by the human eye, does not require knowledge of inherent optical properties and therefore represents a generally applicable remotely-sensed water quality attribute. In this paper, we implemented a recent algorithm for the retrieval of colour parameters (hue angle, dominant wavelength) and derived a new correction for colour purity to account for the spectral bandpass of the Landsat 8 Operational Land Imager (OLI). We used this algorithm to calculate water colour on almost 45,000 observations over four years from 1486 lakes from a diverse range of optical water types in New Zealand. We show that the most prevalent lake colours are yellow-orange and blue, respectively, while green observations are comparatively rare. About 40% of the study lakes show transitions between colours at a range of time scales, including seasonal. A preliminary exploratory analysis suggests that both geo-physical and anthropogenic factors, such as catchment land use, provide environmental control of lake colour and are promising avenues for future analysis

    Waikato shallow lakes modelling

    Get PDF
    The principal aim of this study is to apply a modelling approach to identify, evaluate and prioritise specific in-lake and catchment restoration options which could be applied to improve the water quality and ecological health of peat and riverine lake types across the Waikato Region. Four representative lakes have been selected as case studies for this work based on their social, cultural and ecological significance, as well as the availability of historical monitoring data and the potential transferability of the study findings to similar lake systems. The lakes include Rotomānuka, Ngāroto, Waahi and Waikare

    Tremendous bleeding complication after vacuum-assisted sternal closure

    Get PDF
    Vacuum-assisted closure (VAC) of complex infected wounds has recently gained popularity among various surgical specialties. The system is based on the application of negative pressure by controlled suction to the wound surface. The effectiveness of the VAC System on microcirculation and the promotion of granulation tissue proliferation are proved. No contraindications for the use in deep sternal wounds in cardiac surgery are described. In our case report we illustrate a scenario were a patient developed severe bleeding from the ascending aorta by penetration of wire fragments in the vessel. We conclude that all free particles in the sternum have to be removed completely before negative pressure is used

    Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index

    Get PDF
    Eutrophication of inland waters is considered a serious global environmental problem. Satellite remote sensing (RS) has been established as an important source of information to determine the trophic state of inland waters through the retrieval of optically active water quality parameters such as chlorophyll-a (Chl-a). However, the use of RS techniques for assessment of the trophic state of inland waters on a global scale is hindered by the performance of retrieval algorithms over highly dynamic and complex optical properties that characterize many of these systems. In this study, we developed a new RS approach to assess the trophic state of global inland water bodies based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and the Forel-Ule index (FUI). First, the FUI was calculated from MODIS data by dividing natural water colour into 21 indices from dark blue to yellowish-brown. Then the relationship between FUI and the trophic state index (TSI) was established based on in-situ measurements and MODIS products. The water-leaving reflectance at 645 nm band was employed to distinguish coloured dissolved organic matter (CDOM)-dominated systems in the FUI-based trophic state assessment. Based on the analysis, the FUI-based trophic state assessment method was developed and applied to assess the trophic states of 2058 large inland water bodies (surface area >25 km2) distributed around the world using MODIS data from the austral and boreal summers of 2012. Our results showed that FUI can be retrieved from MODIS with a considerable accuracy (92.5%, R2 = 0.92) by comparing with concurrent in situ measurements over a wide range of lakes, and the overall accuracy of the FUI-based trophic state assessment method is 80.0% (R2 = 0.75) validated by an independent dataset. Of the global large water bodies considered, oligotrophic large lakes were found to be concentrated in plateau regions in central Asia and southern South America, while eutrophic large lakes were concentrated in central Africa, eastern Asia, and mid-northern and southeast North America

    Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters

    Get PDF
    One of the challenging tasks in modern aquatic remote sensing is the retrieval of near-surface concentrations of Total Suspended Solids (TSS). This study aims to present a Statistical, inherent Optical property (IOP) -based, and muLti-conditional Inversion proceDure (SOLID) for enhanced retrievals of satellite-derived TSS under a wide range of in-water bio-optical conditions in rivers, lakes, estuaries, and coastal waters. In this study, using a large in situ database (N \u3e 3500), the SOLID model is devised using a three-step procedure: (a) water-type classification of the input remote sensing reflectance (Rrs), (b) retrieval of particulate backscattering (bbp) in the red or near-infrared (NIR) regions using semi-analytical, machine-learning, and empirical models, and (c) estimation of TSS from bbp via water-type-specific empirical models. Using an independent subset of our in situ data (N = 2729) with TSS ranging from 0.1 to 2626.8 [g/m3], the SOLID model is thoroughly examined and compared against several state-of-the-art algorithms (Miller and McKee, 2004; Nechad et al., 2010; Novoa et al., 2017; Ondrusek et al., 2012; Petus et al., 2010). We show that SOLID outperforms all the other models to varying degrees, i.e.,from 10 to \u3e100%, depending on the statistical attributes (e.g., global versus water-type-specific metrics). For demonstration purposes, the model is implemented for images acquired by the MultiSpectral Imager aboard Sentinel-2A/B over the Chesapeake Bay, San-Francisco-Bay-Delta Estuary, Lake Okeechobee, and Lake Taihu. To enable generating consistent, multimission TSS products, its performance is further extended to, and evaluated for, other missions, such as the Ocean and Land Color Instrument (OLCI), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Operational Land Imager (OLI). Sensitivity analyses on uncertainties induced by the atmospheric correction indicate that 10% uncertainty in Rrs leads to \u3c20% uncertainty in TSS retrievals from SOLID. While this study suggests that SOLID has a potential for producing TSS products in global coastal and inland waters, our statistical analysis certainly verifies that there is still a need for improving retrievals across a wide spectrum of particle loads
    corecore