476 research outputs found

    Radiocarbon evidence for a possible abyssal front near 3.1 km in the glacial equatorial Pacific Ocean

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 425 (2015): 93-104, doi:10.1016/j.epsl.2015.05.025.We investigate the radiocarbon ventilation age in deep equatorial Pacific sediment cores using the difference in conventional 14C age between coexisting benthic and planktonic foraminifera, and integrate those results with similar data from around the North Pacific Ocean in a reconstruction for the last glaciation (15 to 25 conventional 14C ka). Most new data from both the Equatorial Pacific and the Emperor Seamounts in the northwestern Pacific come from maxima in abundance of benthic taxa because this strategy reduces the effect of bioturbation. Although there remains considerable scatter in the ventilation age estimates, on average, ventilation ages in the Equatorial Pacific were significantly greater below 3.2 km (~3080 ±1125 yrs, n=15) than in the depth interval 1.9 to 3.0 km (~1610 ± 250 yrs, n=12). When compared to the average modern seawater Δ14C profile for the North Pacific, the Equatorial Pacific glacial data suggest an abyssal front located somewhere between 3.0 and 3.2 km modern water depth. Above that depth, the data may indicate slightly better ventilation than today, and below that depth, glacial Equatorial Pacific data appear to be as old as last glacial maximum (LGM) deep water ages reported for the deep southern Atlantic. This suggests that a glacial reservoir of aged waters extended throughout the circumpolar Southern Ocean and into the Equatorial Pacific. Renewed ventilation of such a large volume of aged (and, by corollary, carbon-rich) water would help to account for the rise in atmospheric pCO2 and the fall in Δ14C as the glaciation drew to a close.This work was funded by NSF grants OCE-1031224 and OCE-0424861 to LDK and 0851391 to SJL

    A STOL airworthiness investigation using a simulation of an augmentor wing transport. Volume 2: Simulation data and analysis

    Get PDF
    A simulator study of STOL airworthiness was conducted using a model of an augmentor wing transport. The approach, flare and landing, go-around, and takeoff phases of flight were investigated. The simulation and the data obtained are described. These data include performance measures, pilot commentary, and pilot ratings. A pilot/vehicle analysis of glide slope tracking and of the flare maneuver is included

    Marine-derived C-14 calibration and activity record for the past 50,000 years updated from the Cariaco Basin

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 25 (2006): 3216-3227, doi:10.1016/j.quascirev.2006.03.014.An expanded Cariaco Basin 14C chronology is tied to 230Th-dated Hulu Cave speleothem records in order to provide detailed marine-based 14C calibration for the past 50,000 years. The revised, high resolution Cariaco 14C calibration record agrees well with data from 230Th-dated fossil corals back to 33 ka, with continued agreement despite increased scatter back to 50 ka, suggesting that the record provides accurate calibration back to the limits of radiocarbon dating. The calibration data document highly elevated Δ14C during the Glacial period. Carbon cycle box model simulations show that the majority of observed Δ14C change can be explained by increased 14C production. However, from 45 to 15 ka, Δ14C remains anomalously high, indicating that the distribution of radiocarbon between surface and deep ocean reservoirs was different than it is today. Additional observations of the magnitude, spatial extent and timing of deep ocean Δ14C shifts are critical for a complete understanding of observed Glacial Δ14C variability

    Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao4842, doi:10.1126/sciadv.aao4842.In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.The National Science Foundation (PLR-1417149; awarded to J.D.K.) primarily supported this work with additional support provided by the U.S. Department of Energy (DE-FE0028980; awarded to J.D.K.). Atmospheric 14C-CH4 measurements were funded by NASA via the Jet Propulsion Laboratory (Earth Ventures project “Carbon in Arctic Reservoirs Vulnerability Experiment”) to the University of Colorado under contract 1424124. K.M.S. acknowledges support from the University of Minnesota Grant-in-Aid program

    Large and seasonally varying biospheric CO₂ fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon

    Get PDF
    Measurements of Δ¹⁴C and CO₂ can cleanly separate biogenic and fossil contributions to CO₂ enhancements above background. Our measurements of these tracers in air around Los Angeles in 2015 reveal high values of fossil CO₂ and a significant and seasonally varying contribution of CO₂ from the urban biosphere. The biogenic CO₂ is composed of sources such as biofuel combustion and human metabolism and an urban biospheric component likely originating from urban vegetation, including turf and trees. The urban biospheric component is a source in winter and a sink in summer, with an estimated amplitude of 4.3 parts per million (ppm), equivalent to 33% of the observed annual mean fossil fuel contribution of 13 ppm. While the timing of the net carbon sink is out of phase with wintertime rainfall and the sink seasonality of Southern California Mediterranean ecosystems (which show maximum uptake in spring), it is in phase with the seasonal cycle of urban water usage, suggesting that irrigated urban vegetation drives the biospheric signal we observe. Although 2015 was very dry, the biospheric seasonality we observe is similar to the 2006–2015 mean derived from an independent Δ¹⁴C record in the Los Angeles area, indicating that 2015 biospheric exchange was not highly anomalous. The presence of a large and seasonally varying biospheric signal even in the relatively dry climate of Los Angeles implies that atmospheric estimates of fossil fuel–CO₂ emissions in other, potentially wetter, urban areas will be biased in the absence of reliable methods to separate fossil and biogenic CO₂

    Large and seasonally varying biospheric CO₂ fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon

    Get PDF
    Measurements of Δ¹⁴C and CO₂ can cleanly separate biogenic and fossil contributions to CO₂ enhancements above background. Our measurements of these tracers in air around Los Angeles in 2015 reveal high values of fossil CO₂ and a significant and seasonally varying contribution of CO₂ from the urban biosphere. The biogenic CO₂ is composed of sources such as biofuel combustion and human metabolism and an urban biospheric component likely originating from urban vegetation, including turf and trees. The urban biospheric component is a source in winter and a sink in summer, with an estimated amplitude of 4.3 parts per million (ppm), equivalent to 33% of the observed annual mean fossil fuel contribution of 13 ppm. While the timing of the net carbon sink is out of phase with wintertime rainfall and the sink seasonality of Southern California Mediterranean ecosystems (which show maximum uptake in spring), it is in phase with the seasonal cycle of urban water usage, suggesting that irrigated urban vegetation drives the biospheric signal we observe. Although 2015 was very dry, the biospheric seasonality we observe is similar to the 2006–2015 mean derived from an independent Δ¹⁴C record in the Los Angeles area, indicating that 2015 biospheric exchange was not highly anomalous. The presence of a large and seasonally varying biospheric signal even in the relatively dry climate of Los Angeles implies that atmospheric estimates of fossil fuel–CO₂ emissions in other, potentially wetter, urban areas will be biased in the absence of reliable methods to separate fossil and biogenic CO₂

    Proton-pump inhibitor use is associated with low serum magnesium concentrations

    Get PDF
    Although case reports link proton-pump inhibitor (PPI) use and hypomagnesemia, no large-scale studies have been conducted. Here we examined the serum magnesium concentration and the likelihood of hypomagnesemia ( < 1.6 mg/dl) with a history of PPI or histamine-2 receptor antagonist used to reduce gastric acid, or use of neither among 11,490 consecutive adult admissions to an intensive care unit of a tertiary medical center. Of these, 2632 patients reported PPI use prior to admission, while 657 patients were using a histamine-2 receptor antagon ist. PPI use was associated with 0.012 mg/dl lower adjusted serum magnesium concentration compared to users of no acid-suppressive medications, but this effect was restricted to those patients taking diuretics. Among the 3286 patients concurrently on diuretics, PPI use was associated with a significant increase of hypomagnesemia (odds ratio 1.54) and 0.028 mg/dl lower serum magnesium concentration. Among those not using diuretics, PPI use was not associated with serum magnesium levels. Histamine-2 receptor antagonist use was not significantly associated with magnesium concentration without or with diuretic use. The use of PPI was not associated with serum phosphate concentration regardless of diuretic use. Thus, we verify case reports of the association between PPI use and hypomagnesemia in those concurrently taking diuretics. Hence, serum magnesium concentrations should be followed in susceptible individuals on chronic PPI therapy.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant 2R01 EB001659

    Onset of the Thermic Effect of Feeding (TEF): a randomized cross-over trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this investigation was to identify the onset of the thermic effect of feeding (TEF) after ingestion of a high carbohydrate (CHO) and a high protein (PRO) 1255 kJ (300 kcal) drink.</p> <p>Methods</p> <p>Resting metabolic rate (RMR) and TEF were measured over 30-minute periods via indirect calorimetry using a ventilated hood technique. Eighteen subjects (7 men and 11 women) completed two randomized, double-blind trials. Data were collected in 1-minute measurement intervals. RMR was subtracted from TEF and the time of onset was obtained when two consecutive data points exceeded 5% and 10% of resting metabolic rate.</p> <p>Results</p> <p>At 5% above RMR the onset of TEF for CHO was 8.4 ± 6.2 minutes and was not different as compared to PRO, 8.6 ± 5.2 minutes (p = 0.77). Likewise, no differences were found with a 10% increase above RMR: CHO, 14.1 ± 7.5 min; PRO, 16.7 ± 6.7 min (p = 0.36). Several subjects did not show a 10% increase within 30-min.</p> <p>Conclusion</p> <p>We conclude that the onset of TEF is variable among subjects but is initiated within about 5 to 20-min for most subjects after ingestion of a 1255 kJ liquid meal. No differences were found between CHO or PRO liquid meals.</p

    Efficacy and tolerability of evolocumab vs. ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial

    No full text
    Importance: Muscle-related statin intolerance is reported by 5% to 20% of patients. Objective: To identify patients with muscle symptoms confirmed by statin rechallenge and compare lipid-lowering efficacy for 2 nonstatin therapies, ezetimibe and evolocumab. Design, Setting, and Participants: Two-stage randomized clinical trial including 511 adult patients with uncontrolled low-density lipoprotein cholesterol (LDL-C) levels and history of intolerance to 2 or more statins enrolled in 2013 and 2014 globally. Phase A used a 24-week crossover procedure with atorvastatin or placebo to identify patients having symptoms only with atorvastatin but not placebo. In phase B, after a 2-week washout, patients were randomized to ezetimibe or evolocumab for 24 weeks. Interventions: Phase A: atorvastatin (20 mg) vs placebo. Phase B: randomization 2:1 to subcutaneous evolocumab (420 mg monthly) or oral ezetimibe (10 mg daily). Main Outcome and Measures: Coprimary end points were the mean percent change in LDL-C level from baseline to the mean of weeks 22 and 24 levels and from baseline to week 24 levels. Results: Of the 491 patients who entered phase A (mean age, 60.7 [SD, 10.2] years; 246 women [50.1%]; 170 with coronary heart disease [34.6%]; entry mean LDL-C level, 212.3 [SD, 67.9] mg/dL), muscle symptoms occurred in 209 of 491 (42.6%) while taking atorvastatin but not while taking placebo. Of these, 199 entered phase B, along with 19 who proceeded directly to phase B for elevated creatine kinase (N = 218, with 73 randomized to ezetimibe and 145 to evolocumab; entry mean LDL-C level, 219.9 [SD, 72] mg/dL). For the mean of weeks 22 and 24, LDL-C level with ezetimibe was 183.0 mg/dL; mean percent LDL-C change, −16.7% (95% CI, −20.5% to −12.9%), absolute change, −31.0 mg/dL and with evolocumab was 103.6 mg/dL; mean percent change, −54.5% (95% CI, −57.2% to −51.8%); absolute change, −106.8 mg/dL (P &lt; .001). LDL-C level at week 24 with ezetimibe was 181.5 mg/dL; mean percent change, −16.7% (95% CI, −20.8% to −12.5%); absolute change, −31.2 mg/dL and with evolocumab was 104.1 mg/dL; mean percent change, −52.8% (95% CI, −55.8% to −49.8%); absolute change, −102.9 mg/dL (P &lt; .001). For the mean of weeks 22 and 24, between-group difference in LDL-C was −37.8%; absolute difference, −75.8 mg/dL. For week 24, between-group difference in LDL-C was −36.1%; absolute difference, –71.7 mg/dL. Muscle symptoms were reported in 28.8% of ezetimibe-treated patients and 20.7% of evolocumab-treated patients (log-rank P = .17). Active study drug was stopped for muscle symptoms in 5 of 73 ezetimibe-treated patients (6.8%) and 1 of 145 evolocumab-treated patients (0.7%). Conclusions and Relevance: Among patients with statin intolerance related to muscle-related adverse effects, the use of evolocumab compared with ezetimibe resulted in a significantly greater reduction in LDL-C levels after 24 weeks. Further studies are needed to assess long-term efficacy and safety
    corecore