16 research outputs found

    Spin states of asteroids in the Eos collisional family

    Full text link
    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ~20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.Comment: Accepted for publication in ICARUS Special Issue - Asteroids: Origin, Evolution & Characterizatio

    Flood fragility analysis for bridges with multiple failure modes

    Get PDF
    Bridges are one of the most important infrastructure systems that provide public and economic bases for humankind. It is also widely known that bridges are exposed to a variety of flood-related risk factors such as bridge scour, structural deterioration, and debris accumulation, which can cause structural damage and even failure of bridges through a variety of failure modes. However, flood fragility has not received as much attention as seismic fragility despite the significant amount of damage and costs resulting from flood hazards. There have been few research efforts to estimate the flood fragility of bridges considering various flood-related factors and the corresponding failure modes. Therefore, this study proposes a new approach for bridge flood fragility analysis. To obtain accurate flood fragility estimates, reliability analysis is performed in conjunction with finite element analysis, which can sophisticatedly simulate the structural response of a bridge under a flood by accounting for flood-related risk factors. The proposed approach is applied to a numerical example of an actual bridge in Korea. Flood fragility curves accounting for multiple failure modes, including lack of pier ductility or pile ductility, pier rebar rupture, pile rupture, and deck loss, are derived and presented in this study.ope

    The triple system CG Aurigae

    No full text
    Several new precise times of eclipses were measured for eclipsing binary CG Aur as a part of our long-term observational project for studying eclipsing binaries with an eccentric orbit. Based on a current O - C diagram, we found for the first time that its orbit is slightly eccentric (e = 0.124) and that times of minima besides the slow apsidal motion show very rapid changes with a period about 700 days only, caused very probably by the third body orbiting the eclipsing pair. The relativistic contribution to the total apsidal-motion rate is significant being about 33%.Web of Science16640440

    Apsidal motion in five eccentric eclipsing binaries

    No full text
    Aims. As part of the long-term Ondrejov and Ostrava observational projects, we aim to measure the precise times of minimum light for eccentric eclipsing binaries, needed for accurate determination of apsidal motion. Over fifty new times of minimum light recorded with CCD photometers were obtained for five early-type and eccentric-orbit eclipsing binaries: V785 Cas (P = 2.(d)70, e = 0.09), V821 Cas (1.(d)77, 0.14), V796 Cyg (1.(d)48, 0.07), V398 Lac (5.(d)41, 0.23), and V871 Per (3.(d)02, 0.24). Methods. O-C diagrams of binaries were analysed using all reliable timings found in the literature, and new elements of apsidal motion were obtained. Results. We derived for the first time or improved the relatively short periods of apsidal motion of about 83, 140, 33, 440, and 70 years for V785 Cas, V821 Cas, V796 Cyg, V398 Lac, and V871 Per, respectively. The internal structure constants, log k(2), for V821 Cas and V398 Lac are then found to be -2.70 and -2.35, under the assumption that the component stars rotate pseudosynchronously. The relativistic effects are weak, up to 7% of the total apsidal motion rate.Web of Science549art. no. A10

    Possible substellar companions in low-mass eclipsing binaries: GU Bootis and YY Geminorum

    No full text
    We present the next results of our long-term observational project to analyze the variations in the orbital periods of low-mass eclipsing binaries. About 70 new precise mid-eclipse times recorded with a CCD were obtained for two eclipsing binaries with short orbital periods: GU Boo (P = 0.​d49) and YY Gem (0.​d81). Observed-minus-calculated diagrams of the stars were analyzed using all reliable timings, and new parameters of the light-time effect were obtained. We derived for the first time or improved the short orbital periods of possible third bodies of 11 and 54 years for these low-mass binaries, respectively. We calculated that the minimum masses of the third components are close to 50 MJup, which corresponds to the mass of brown dwarfs. The multiplicity of these systems also plays an important role in the precise determination of their physical parameters

    Shape model and spin state of non-principal axis rotator (5247) Krylov

    Get PDF
    Context. The study of non-principal axis (NPA) rotators can provide important clues to the evolution of the spin state of asteroids. However, very few studies to date have focused on NPA-rotating main belt asteroids (MBAs). One MBA known to be in an excited rotation state is asteroid (5247) Krylov. Aims. By using disk-integrated photometric data, we construct a physical model of (5247) Krylov including shape and spin state. Methods. We applied the light curve convex inversion method employing optical light curves obtained by using ground-based telescopes in three apparitions during 2006, 2016, and 2017, along with infrared light curves obtained by the Wide-field Infrared Survey Explorer satellite in 2010. Results. Asteroid (5247) Krylov is spinning in a short axis mode characterized by rotation and precession periods of 368.7 and 67.27 h, respectively. The angular momentum vector orientation of Krylov is found to be λL = 298° and βL = −58°. The ratio of the rotational kinetic energy to the basic spin-state energy E∕E0 ≃ 1.02 shows that the (5247) Krylov is about 2% excited state compared to the principal axis rotation state. The shape of (5247) Krylov can be approximated by an elongated prolate ellipsoid with a ratio of moments of inertia of Ia : Ib : Ic = 0.36 : 0.96 : 1. This is the first physical model of an NPA rotator among MBAs. The physical processes that led to the current NPA rotation cannot be unambiguously reconstructed
    corecore