143 research outputs found

    Quantum measurement of the degree of polarization of a light beam

    Full text link
    We demonstrate a coherent quantum measurement for the determination of the degree of polarization (DOP). This method allows to measure the DOP in the presence of fast polarization state fluctuations, difficult to achieve with the typically used polarimetric technique. A good precision of the DOP measurements is obtained using 8 type II nonlinear crystals assembled for spatial walk-off compensation.Comment: 4 pages, 3 figure

    Distribution of time-bin qubits over 50 km of optical fiber

    Full text link
    We report experimental distribution of time-bin entangled qubits over 50 km of optical fibers. Using actively stabilized preparation and measurement devices we demonstrate violation of the CHSH Bell inequality by more than 15 standard deviations without removing the detector noise. In addition we report a proof of principle experiment of quantum key distribution over 50 km of optical fibers using entangled photon.Comment: 4 pages, 4 figure

    Creation of backdoors in quantum communications via laser damage

    Full text link
    Practical quantum communication (QC) protocols are assumed to be secure provided implemented devices are properly characterized and all known side channels are closed. We show that this is not always true. We demonstrate a laser-damage attack capable of modifying device behaviour on-demand. We test it on two practical QC systems for key distribution and coin-tossing, and show that newly created deviations lead to side channels. This reveals that laser damage is a potential security risk to existing QC systems, and necessitates their testing to guarantee security.Comment: Changed the title to match the journal version. 9 pages, 5 figure

    Maximum-likelihood estimation prevents unphysical Mueller matrices

    Full text link
    We show that the method of maximum-likelihood estimation, recently introduced in the context of quantum process tomography, can be applied to the determination of Mueller matrices characterizing the polarization properties of classical optical systems. Contrary to linear reconstruction algorithms, the proposed method yields physically acceptable Mueller matrices even in presence of uncontrolled experimental errors. We illustrate the method on the case of an unphysical measured Mueller matrix taken from the literature.Comment: 3 pages, 1 figur

    Direct measurement of superluminal group velocity and of signal velocity in an optical fiber

    Full text link
    We present an easy way of observing superluminal group velocities using a birefringent optical fiber and other standard devices. In the theoretical analysis, we show that the optical properties of the setup can be described using the notion of "weak value". The experiment shows that the group velocity can indeed exceed c in the fiber; and we report the first direct observation of the so-called "signal velocity", the speed at which information propagates and that cannot exceed c.Comment: 5 pages, 5 figure

    Large Scale In Silico Screening on Grid Infrastructures

    Get PDF
    Large-scale grid infrastructures for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale in silico docking within the framework of the WISDOM initiative against Malaria and Avian Flu requiring about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large-scale grid infrastructures for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in the proceeding

    SHARE roadmap 1:Towards a debate

    Get PDF
    10 pagesInternational audienceWe present the ‘HealthGrid' initiative and review work carried out in various European projects. Since the European Commission's Information Society Technologies programme funded the first grid-based health and medical projects, the HealthGrid movement has flourished in Europe. Many projects have now been completed and ‘Healthgrid' consulted a number of experts to compile and publish a ‘White Paper' which establishes the foundations, potential scope and prospects of an approach to health informatics based on a grid infrastructure. The White Paper demonstrates the ways in which the healthgrid approach supports many modern trends in medicine and healthcare, such as evidence-based practice, integration across levels, from molecules and cells, through tissues and organs to the whole person and community, and the promise of individualized health care. A second generation of projects have now been funded, and the EC has commissioned a study to define a research roadmap for a ‘healthgrid for Europe', seen as the preferred infrastructure for medical and health care projects in the European Research Area

    Witnessing effective entanglement over a 2km fiber channel

    Full text link
    We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of the transmitted signal, we estimate the attenuation and the excess noise caused by the channel. The estimated excess noise originating from the channel and the channel attenuation including the quantum efficiency of the detection setup is investigated with respect to the detection of effective entanglement. The local oscillator is considered in the verification. We witness effective entanglement with a channel length of up to 2km.Comment: 11 pages, 5 figure
    • …
    corecore