1,316 research outputs found
Imaging the human hippocampus with optically-pumped magnetoencephalography
Optically-pumped (OP) magnetometers allow magnetoencephalography (MEG) to be performed while a participant’s head is unconstrained. To fully leverage this new technology, and in particular its capacity for mobility, the
activity of deep brain structures which facilitate explorative behaviours such as navigation, must be detectable
using OP-MEG. One such crucial brain region is the hippocampus. Here we had three healthy adult participants
perform a hippocampal-dependent task – the imagination of novel scene imagery – while being scanned using OPMEG. A conjunction analysis across these three participants revealed a significant change in theta power in the
medial temporal lobe. The peak of this activated cluster was located in the anterior hippocampus. We repeated the
experiment with the same participants in a conventional SQUID-MEG scanner and found similar engagement of
the medial temporal lobe, also with a peak in the anterior hippocampus. These OP-MEG findings indicate exciting
new opportunities for investigating the neural correlates of a range of crucial cognitive functions in naturalistic
contexts including spatial navigation, episodic memory and social interactions
Optically pumped magnetoencephalography in epilepsy
We demonstrate the first use of Optically Pumped Magnetoencephalography (OP-MEG) in an epilepsy patient with unrestricted head movement. Current clinical MEG uses a traditional SQUID system, where sensors are cryogenically cooled and housed in a helmet in which the patient's head is fixed. Here, we use a different type of sensor (OPM), which operates at room temperature and can be placed directly on the patient's scalp, permitting free head movement. We performed OP-MEG recording in a patient with refractory focal epilepsy. OP-MEG-identified analogous interictal activity to scalp EEG, and source localized this activity to an appropriate brain region
Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography
One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms
A tool for functional brain imaging with lifespan compliance
The human brain undergoes significant functional and structural changes in the first decades of life, as the foundations for human cognition are laid down. However, non-invasive imaging techniques to investigate brain function throughout neurodevelopment are limited due to growth in head-size with age and substantial head movement in young participants. Experimental designs to probe brain function are also limited by the unnatural environment typical brain imaging systems impose. However, developments in quantum technology allowed fabrication of a new generation of wearable magnetoencephalography (MEG) technology with the potential to revolutionise electrophysiological measures of brain activity. Here we demonstrate a lifespan-compliant MEG system, showing recordings of high fidelity data in toddlers, young children, teenagers and adults. We show how this system can support new types of experimental paradigm involving naturalistic learning. This work reveals a new approach to functional imaging, providing a robust platform for investigation of neurodevelopment in health and disease
Microwave amplification with nanomechanical resonators
Sensitive measurement of electrical signals is at the heart of modern science
and technology. According to quantum mechanics, any detector or amplifier is
required to add a certain amount of noise to the signal, equaling at best the
energy of quantum fluctuations. The quantum limit of added noise has nearly
been reached with superconducting devices which take advantage of
nonlinearities in Josephson junctions. Here, we introduce a new paradigm of
amplification of microwave signals with the help of a mechanical oscillator. By
relying on the radiation pressure force on a nanomechanical resonator, we
provide an experimental demonstration and an analytical description of how the
injection of microwaves induces coherent stimulated emission and signal
amplification. This scheme, based on two linear oscillators, has the advantage
of being conceptually and practically simpler than the Josephson junction
devices, and, at the same time, has a high potential to reach quantum limited
operation. With a measured signal amplification of 25 decibels and the addition
of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave
amplification is feasible in various applications involving integrated
electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main
text), 18 pages, 6 figures (supplementary information
Magnetic Field Mapping and Correction for Moving OP-MEG
Background: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves. This leads to position and orientation dependent changes in the measurements, which manifest as low frequency artefacts in MEG data. Objective: We modelled the spatial variation in the magnetic field and used the model to predict the movement artefact found in a dataset. Methods: We demonstrate a method for modelling this field with a triaxial magnetometer, then showed that we can use the same technique to predict the movement artefact in a real OPM-based MEG (OP-MEG) dataset. Results: Using an 86-channel OP-MEG system, we found that this modelling method maximally reduced the power spectral density of the data by 27.8 0.6 dB at 0 Hz, when applied over 5 s non-overlapping windows. Conclusion: The magnetic field inside our state-of-the art magnetically shielded room can be well described by low-order spherical harmonic functions. We achieved a large reduction in movement noise when we applied this model to OP-MEG data. Significance: Real-time implementation of this method could reduce passive shielding requirements for OP-MEG recording and allow the measurement of low-frequency brain activity during natural participant movement
Optical Lattices: Theory
This chapter presents an overview of the properties of a Bose-Einstein
condensate (BEC) trapped in a periodic potential. This system has attracted a
wide interest in the last years, and a few excellent reviews of the field have
already appeared in the literature (see, for instance, [1-3] and references
therein). For this reason, and because of the huge amount of published results,
we do not pretend here to be comprehensive, but we will be content to provide a
flavor of the richness of this subject, together with some useful references.
On the other hand, there are good reasons for our effort. Probably, the most
significant is that BEC in periodic potentials is a truly interdisciplinary
problem, with obvious connections with electrons in crystal lattices, polarons
and photons in optical fibers. Moreover, the BEC experimentalists have reached
such a high level of accuracy to create in the lab, so to speak, paradigmatic
Hamiltonians, which were first introduced as idealized theoretical models to
study, among others, dynamical instabilities or quantum phase transitions.Comment: Chapter 13 in Part VIII: "Optical Lattices" of "Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P.
G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer
Series on Atomic, Optical, and Plasma Physics, 2007) - pages 247-26
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
Theory of Multidimensional Solitons
We review a number of topics germane to higher-dimensional solitons in
Bose-Einstein condensates. For dark solitons, we discuss dark band and planar
solitons; ring dark solitons and spherical shell solitons; solitary waves in
restricted geometries; vortex rings and rarefaction pulses; and multi-component
Bose-Einstein condensates. For bright solitons, we discuss instability,
stability, and metastability; bright soliton engineering, including pulsed atom
lasers; solitons in a thermal bath; soliton-soliton interactions; and bright
ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P.
G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez
(Springer-Verlag
Moving magnetoencephalography towards real-world applications with a wearable system
Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors2,3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders
- …