2,972 research outputs found

    Effects of spatially displaced feedback on remote manipulation tasks

    Get PDF
    Several studies have been performed to determine the effects on computer and direct manipulation task performance when viewing conditions are spatially displaced. Whether results from these studies can be directly applied to remote manipulation tasks is quenstionable. The objective of this evaluation was to determine the effects of reversed, inverted, and inverted/reversed views on remote manipulation task performance using two 3-Degree of Freedom (DOF) hand controllers and a replica position hand controller. Results showed that trials using the inverted viewing condition showed the worst performance, followed by the inverted/reversed view and the reversed view when using the 2x3 DOF. However, these differences were not significant. The inverted and inverted/reversed viewing conditions were significantly worse than the normal and reversed viewing conditions when using the Kraft Replica. A second evaluation was conducted in which additional trials were performed with each viewing condition to determine the long term effects of spatially displaced views on task performance for the hand controllers. Results of the second evaluation indicated that there was more of a difference in performance between the perturbed viewing conditions and the normal viewing condition with the Kraft Replica than with the 2x3 DOF

    Moller operators and Lippmann-Schwinger equations for step-like potentials

    Get PDF
    The Moller operators and the asociated Lippman-Schwinger equations obtained from different partitionings of the Hamiltonian for a step-like potential barrier are worked out, compared and related.Comment: 15 pages, 1 inlined figure, iopart.cl

    Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair

    Get PDF
    Members of the galectin family of endogenous lectins are potent adhesion/growth-regulatory effectors. Their multi-functionality opens possibilities for their use in bioapplications. We studied whether human galectins induce the conversion of human dermal fibroblasts into myofibroblasts (MFBs) and the production of a bioactive extracellular matrix scaffold is suitable for cell culture. Testing a panel of galectins of all three subgroups, including natural and engineered variants, we detected activity for the proto-type galectin-1 and galectin-7, the chimera-type galectin-3 and the tandem-repeat-type galectin-4. The activity of galectin-1 required the integrity of the carbohydrate recognition domain. It was independent of the presence of TGF-beta 1, but it yielded an additive effect. The resulting MFBs, relevant, for example, for tumor progression, generated a matrix scaffold rich in fibronectin and galectin-1 that supported keratinocyte culture without feeder cells. Of note, keratinocytes cultured on this substratum presented a stem-like cell phenotype with small size and keratin-19 expression. In vivo in rats, galectin-1 had a positive effect on skin wound closure 21 days after surgery. In conclusion, we describe the differential potential of certain human galectins to induce the conversion of dermal fibroblasts into MFBs and the generation of a bioactive cell culture substratum. Copyright (C) 2011 S. Karger AG, Base

    Fuchs versus Painlev\'e

    Full text link
    We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e VI. We then show that the polynomiality of the expressions of the correlation functions (and form factors) in terms of the complete elliptic integral of the first and second kind, K K and E E, is a straight consequence of the fact that the differential operators corresponding to the entries of Toeplitz-like determinants, are equivalent to the second order operator LE L_E which has E E as solution (or, for off-diagonal correlations to the direct sum of LE L_E and d/dt d/dt). We show that this can be generalized, mutatis mutandis, to the anisotropic Ising model. The singled-out second order linear differential operator LE L_E being replaced by an isomonodromic system of two third-order linear partial differential operators associated with Π1 \Pi_1, the Jacobi's form of the complete elliptic integral of the third kind (or equivalently two second order linear partial differential operators associated with Appell functions, where one of these operators can be seen as a deformation of LE L_E). We finally explore the generalizations, to the anisotropic Ising models, of the links we made, in two previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and elliptic curves. In particular the elliptic representation of Painlev\'e VI has to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of Difference Equations, SIDE VII meeting held in Melbourne during July 200

    Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?

    Get PDF
    Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel

    Building solids inside nano-space: from confined amorphous through confined solvate to confined ‘metastable’ polymorph

    Get PDF
    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate – ROY (259.3 g mol1). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical – indomethacin (IMC, 357.8 g mol1), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids

    Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!

    Get PDF
    During brain development, there is a progressive reduction of intracellular chloride associated with a shift in GABA polarity: GABA depolarizes and occasionally excites immature neurons, subsequently hyperpolarizing them at later stages of development. This sequence, which has been observed in a wide range of animal species, brain structures and preparations, is thought to play an important role in activity-dependent formation and modulation of functional circuits. This sequence has also been considerably reinforced recently with new data pointing to an evolutionary preserved rule. In a recent 'Hypothesis and Theory Article', the excitatory action of GABA in early brain development is suggested to be "an experimental artefact" (Bregestovski and Bernard, 2012). The authors suggest that the excitatory action of GABA is due to an inadequate/insufficient energy supply in glucose-perfused slices and/or to the damage produced by the slicing procedure. However, these observations have been repeatedly contradicted by many groups and are inconsistent with a large body of evidence including the fact that the developmental shift is neither restricted to slices nor to rodents. We summarize the overwhelming evidence in support of both excitatory GABA during development, and the implications this has in developmental neurobiology. \ua9 2012 Ben-ari, Woodin, Sernagor, Cancedda, Vinay, Rivera,Legendre, Luhmann, Bordey, Wenner, Fukuda, Pol, Jean-luc and Cherubini

    Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests

    Get PDF
    Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized

    Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts

    Get PDF
    A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts
    corecore