467 research outputs found

    Effect of disjoining pressure in a thin film equation with\ud non-uniform forcing

    Get PDF
    We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations and analytical considerations. The disjoining pressure has a regularizing influence on the evolution of the system and appears to select a single steady-state solution for fixed height boundary conditions; this is in contrast with the existence of a continuum of locally attracting solutions that exist in the absence of disjoining pressure for the same boundary conditions. We numerically implement matched asymptotics expansions to construct equilibrium solutions and also investigate how they behave as the disjoining pressure is sent to zero. Finally, we consider the effect of the competition between forcing and disjoining pressure on the coarsening dynamics of the thin film for fixed contact angle boundary conditions

    Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks

    Full text link
    We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model. From this model we derive an estimate of the amount of gas flowing into a gap opened by a planet with Hill radius comparable to the scale-height of a layered disk (i. e. a disk with viscous upper layer and inviscid midplane). Our estimate agrees with modern MRI simulations(Gressel et al., 2013). We conclude that gap opening in a layered disk can not slow down significantly the runaway gas accretion of Saturn to Jupiter-mass planets.Comment: in press as a Note in Icaru

    External Fluctuations in a Pattern-Forming Instability

    Get PDF
    The effect of external fluctuations on the formation of spatial patterns is analysed by means of a stochastic Swift-Hohenberg model with multiplicative space-correlated noise. Numerical simulations in two dimensions show a shift of the bifurcation point controlled by the intensity of the multiplicative noise. This shift takes place in the ordering direction (i.e. produces patterns), but its magnitude decreases with that of the noise correlation length. Analytical arguments are presented to explain these facts.Comment: 11 pages, Revtex, 10 Postscript figures added with psfig style (included). To appear in Physical Review

    Swift-Hohenberg equation for lasers

    Get PDF
    Pattern formation in large aspect ratio, single longitudinal mode, two-level lasers with flat end reflectors, operating near peak gain, is shown to be described by a complex Swift-Hohenberg equation for class A and C lasers and by a complex Swift-Hohenberg equation coupled to a mean flow for the case of a class B laser

    Neuronal Activity in the Human Subthalamic Nucleus Encodes Decision Conflict during Action Selection

    Get PDF
    The subthalamic nucleus (STN), which receives excitatory inputs from the cortex and has direct connections with the inhibitory pathways\ud of the basal ganglia, is well positioned to efficiently mediate action selection. Here, we use microelectrode recordings captured during\ud deep brain stimulation surgery as participants engage in a decision task to examine the role of the human STN in action selection. We\ud demonstrate that spiking activity in the STN increases when participants engage in a decision and that the level of spiking activity\ud increases with the degree of decision conflict. These data implicate the STN as an important mediator of action selection during decision\ud processes.\u

    Controlling extended systems with spatially filtered, time-delayed feedback

    Full text link
    We investigate a control technique for spatially extended systems combining spatial filtering with a previously studied form of time-delay feedback. The scheme is naturally suited to real-time control of optical systems. We apply the control scheme to a model of a transversely extended semiconductor laser in which a desirable, coherent traveling wave state exists, but is a member of a nowhere stable family. Our scheme stabilizes this state, and directs the system towards it from realistic, distant and noisy initial conditions. As confirmed by numerical simulation, a linear stability analysis about the controlled state accurately predicts when the scheme is successful, and illustrates some key features of the control including the individual merit of, and interplay between, the spatial and temporal degrees of freedom in the control.Comment: 9 pages REVTeX including 7 PostScript figures. To appear in Physical Review
    • …
    corecore