9 research outputs found

    Characterization of surface wetting uniformity in hydrophobic tubes using ferrofluid droplets

    Get PDF
    Hydrophobic surfaces, or water repellent surfaces, have interesting properties for applications on selfcleaning, anti-icing, antifogging and fluid drag reduction. To develop more efficient surfaces, proper characterization methods need to be developed as the current methods available are not sufficient. In this thesis, the theoretical background behind wetting phenomena on hydrophobic surfaces and various techniques for characterizing wetting properties are presented. Furthermore, a new characterization technique applied to hollow, non planar surfaces and more specifically to transparent tubes is proposed. This technique measures wetting inhomogeneities using magnetically controlled water-like droplets over the entire length of the samples. This technique can measure the retentive force, a dissipative force related to the contact angle hysteresis at the three-phase contact line. This technique is used to see differences in wetting properties using reference tubes and their annealed counterparts using two different ferrofluids. As a non-destructive and quantitative characterization method, this technique could readily be used for quality control in academia and industries

    Heterogeneity in tribologically transformed structure (TTS) of Ti-6Al-4V under fretting

    Full text link
    Fretting wear is a surface degradation process caused by oscillatory motion and contact slipping. During gross slip, high local stresses and plastic deformation in the surface and subsurface can lead to the creation of a nanosized grained structure called Tribologically Transformed Structure (TTS). The current paper studies the formation of TTS in an alpha-beta Ti-6Al-4V alloy under fretting loading while changing the contact pressure and the number of fretting cycles.Cross-sections of wear scars are observed after polishing and chemical etching. Above a threshold pressure of 300 MPa, TTS appears early in the contact (before 1000 cycles) along with two other structures: a Third Body Layer (TBL) made of compacted debris and a General Deformed Layer (GDL) which is the plastic zone under the TTS. TTS first appears as islands and merges in the middle of the contact after enough cycles. Below 200 MPa, only TBL and GDL are formed. At 200 MPa, only small, localized TTS is found. All structures have the same chemical compositions as the initial bulk material except for the nitrided TBL. TTS has a very high hardness compared to the bulk. TTS was carefully extracted using a Focused Ion Beam (FIB) and its microstructure was observed with a Transmission Electron Microscope (TEM). It shows extreme grain refinement and is composed of two alternated zones. The first zone I is composed of α\alpha grains with a size of 20 to 50 nm with crystallographic texture. Zone II comprises nanosized equiaxed grains whose sizes range from 5 to 20 nm without texture. The results made it possible to establish a scenario of the appearance of the TTS according to the conditions of contact pressure and number of fretting cycles

    IMGT/GeneInfo: T cell receptor gamma TRG and delta TRD genes in database give access to all TR potential V(D)J recombinations

    Get PDF
    BACKGROUND: Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V), diversity (D) and joining (J) genes in the immunoglobulin (IG) loci of B lymphocytes and in the T cell receptor (TR) loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS). Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files) and are difficult to extract. DESCRIPTION: IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(D)J genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at . CONCLUSION: IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(D)J gene rearrangements and their applications in immune response analysis

    Numerical Modelling Of The V-J Combinations Of The T Cell Receptor TRA/TRD Locus

    Get PDF
    T-Cell antigen Receptor (TR) repertoire is generated through rearrangements of V and J genes encoding α and β chains. The quantification and frequency for every V-J combination during ontogeny and development of the immune system remain to be precisely established. We have addressed this issue by building a model able to account for Vα-Jα gene rearrangements during thymus development of mice. So we developed a numerical model on the whole TRA/TRD locus, based on experimental data, to estimate how Vα and Jα genes become accessible to rearrangements. The progressive opening of the locus to V-J gene recombinations is modeled through windows of accessibility of different sizes and with different speeds of progression. Furthermore, the possibility of successive secondary V-J rearrangements was included in the modelling. The model points out some unbalanced V-J associations resulting from a preferential access to gene rearrangements and from a non-uniform partition of the accessibility of the J genes, depending on their location in the locus. The model shows that 3 to 4 successive rearrangements are sufficient to explain the use of all the V and J genes of the locus. Finally, the model provides information on both the kinetics of rearrangements and frequencies of each V-J associations. The model accounts for the essential features of the observed rearrangements on the TRA/TRD locus and may provide a reference for the repertoire of the V-J combinatorial diversity

    Heterogeneity in tribologically transformed structure (TTS) of Ti–6Al–4V under fretting

    No full text
    International audienceFretting wear is a surface degradation process caused by oscillatory motion and contact slipping. During gross slip, high local stresses and plastic deformation in the surface and subsurface can lead to the creation of a nanosized grained structure called Tribologically Transformed Structure (TTS). The current paper studies the formation of TTS in an alpha-beta Ti-6Al-4V alloy under fretting loading while changing the contact pressure and the number of fretting cycles.Cross-sections of wear scars are observed after polishing and chemical etching. Above a threshold pressure of 300 MPa, TTS appears early in the contact (before 1000 cycles) along with two other structures: a Third Body Layer (TBL) made of compacted debris and a General Deformed Layer (GDL) which is the plastic zone under the TTS. TTS first appears as islands and merges in the middle of the contact after enough cycles. Below 200 MPa, only TBL and GDL are formed. At 200 MPa, only small, localized TTS is found. All structures have the same chemical compositions as the initial bulk material except for the nitrided TBL. TTS has a very high hardness compared to the bulk. TTS was carefully extracted using a Focused Ion Beam (FIB) and its microstructure was observed with a Transmission Electron Microscope (TEM). It shows extreme grain refinement and is composed of two alternated zones. The first zone I is composed of α grains with a size of 20 to 50 nm with crystallographic texture. Zone II comprises nanosized equiaxed grains whose sizes range from 5 to 20 nm without texture. The results made it possible to establish a scenario of the appearance of the TTS according to the conditions of contact pressure and number of fretting cycles

    IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    No full text
    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), and related proteins of the immune system of human and other vertebrate species. The IMGT/GeneInfo system was developed by the TIMC and ICH laboratories (with the collaboration of LIGM), and is the first example of an external system being incorporated into IMGT. In this paper, we report the first part of this work. IMGT/GeneInfo_TR deals with the human and mouse TRA/TRD and TRB loci of the TR. Data handling and visualization are complementary to the current data and tools in IMGT, and will subsequently allow the modelling of V(D)J gene use, and thus, to predict non-standard recombination profiles which may eventually be found in conditions such as leukaemias or lymphomas. Access to IMGT/GeneInfo is free and can be found at http://imgt.cines.fr/GeneInfo

    Measuring Psychological Mechanisms in Meditation Practice: Using a Phenomenologically Grounded Classification System to Develop Theory-Based Composite Scores

    No full text
    Objectives: Deepening our understanding of the mechanisms by which meditation practices impact well-being and human flourishing is essential for advancing the science of meditation. A recent phenomenologically grounded classification system distinguishes attentional, constructive, and deconstructive forms of meditation based on the psychological mechanisms these practices primarily target or necessitate. Our main aim was to understand whether this theory-based taxonomy could be used as a guiding principle for combining established psychological self-report measures of meditation-related mechanisms into psychometrically adequate composite scores. Methods: We used cross-sectional data to compute meditation composite scores in three independent samples, namely meditation-naïve healthy older adults from the Age-Well trial (n = 135), meditation-naïve older adults with subjective cognitive decline from the SCD-Well trial (n = 147), and healthy long-term meditators (≥ 10,000 h of practice including one 3-year meditation retreat) from the Brain & Mindfulness project (n = 29). The psychometric properties of the composite scores were assessed via floor and ceiling effects, composite intercorrelations, interpretability, and convergent validity in relation to well-being, anxiety, and depression. Results: Three theoretically derived meditation composite scores, reflecting mechanisms involved in attentional, constructive, and deconstructive practices, displayed adequate psychometric properties. Separate secondary confirmatory factor analyses empirically corroborated the theoretically predicted three-factor structure of this classification system. Conclusions: Complementing data-driven approaches, this study offers preliminary support for using a theoretical model of meditation-related mechanisms to create empirically meaningful and psychometrically sound composite scores. We conclude by suggesting conceptual and methodological considerations for future research in this area
    corecore