17 research outputs found

    Front Cell Dev Biol

    Get PDF
    The age-associated reduction in the proliferation of neural stem cells (NSCs) has been associated with cognitive decline. Numerous factors have been shown to modulate this process, including dietary components. Frequent consumption of caffeine has been correlated with an increased risk of cognitive decline, but further evidence of a negative effect on hippocampal progenitor proliferation is limited to animal models. Here, we used a human hippocampal progenitor cell line to investigate the effects of caffeine on hippocampal progenitor integrity and proliferation specifically. The effects of five caffeine concentrations (0 mM = control, 0.1 mM ∼ 150 mg, 0.25 mM ∼ 400 mg, 0.5 mM ∼ 750 mg, and 1.0 mM ∼ 1500 mg) were measured following acute (1 day) and repeated (3 days) exposure. Immunocytochemistry was used to quantify hippocampal progenitor integrity (i.e., SOX2- and Nestin-positive cells), proliferation (i.e., Ki67-positive cells), cell count (i.e., DAPI-positive cells), and apoptosis (i.e., CC3-positive cells). We found that progenitor integrity was significantly reduced in supraphysiological caffeine conditions (i.e., 1.0 mM ∼ 1500 mg), but relative to the lowest caffeine condition (i.e., 0.1 mM ∼ 150 mg) only. Moreover, repeated exposure to supraphysiological caffeine concentrations (i.e., 1.0 mM ∼ 1500 mg) was found to affect proliferation, significantly reducing % Ki67-positive cells relative to control and lower caffeine dose conditions (i.e., 0.1 mM ∼ 150 mg and 0.25 mM ∼ 400 mg). Caffeine treatment did not influence apoptosis and there were no significant differences in any measure between lower doses of caffeine (i.e., 0.1 mM, 0.25 mM, 0.5 mM) - representative of daily human caffeine intake - and control conditions. Our study demonstrates that dietary components such as caffeine can influence NSC integrity and proliferation and may be indicative of a mechanism by which diet affects cognitive outcomes

    EBioMedicine

    Get PDF
    BACKGROUND: Brain lipid metabolism appears critical for cognitive aging, but whether alterations in the lipidome relate to cognitive decline remains unclear at the system level. METHODS: We studied participants from the Three-City study, a multicentric cohort of older persons, free of dementia at time of blood sampling, and who provided repeated measures of cognition over 12 subsequent years. We measured 189 serum lipids from 13 lipid classes using shotgun lipidomics in a case-control sample on cognitive decline (matched on age, sex and level of education) nested within the Bordeaux study center (discovery, n = 418). Associations with cognitive decline were investigated using bootstrapped penalized regression, and tested for validation in the Dijon study center (validation, n = 314). FINDINGS: Among 17 lipids identified in the discovery stage, lower levels of the triglyceride TAG50:5, and of four membrane lipids (sphingomyelin SM40:2,2, phosphatidylethanolamine PE38:5(18:1/20:4), ether-phosphatidylethanolamine PEO34:3(16:1/18:2), and ether-phosphatidylcholine PCO34:1(16:1/18:0)), and higher levels of PCO32:0(16:0/16:0), were associated with greater odds of cognitive decline, and replicated in our validation sample. INTERPRETATION: These findings indicate that in the blood lipidome of non-demented older persons, a specific profile of lipids involved in membrane fluidity, myelination, and lipid rafts, is associated with subsequent cognitive decline. FUNDING: The complete list of funders is available at the end of the manuscript, in the Acknowledgement section

    Nutrients

    Get PDF
    The gut microbiome is involved in nutrient metabolism and produces metabolites that, via the gut-brain axis, signal to the brain and influence cognition. Human studies have so far had limited success in identifying early metabolic alterations linked to cognitive aging, likely due to limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based cohort who had not been diagnosed with dementia at the time of blood sampling were included, and repeated measures of cognition over 12 subsequent years were collected. Using a targeted metabolomics platform, we identified 72 circulating gut-derived metabolites in a case-control study on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation). Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on metabolism and cognition deserves further investigation.COGINUT : Cognition, anti-oxydants, acides gras: approche interdisciplinaire du rôle de la nutrition dans le vieillissement du cerveauHistoire naturelle du déclin cognitif et du besoin de soins chez le sujet âg

    The serum metabolome mediates the concert of diet, exercise, and neurogenesis, determining the risk for cognitive decline and dementia

    Get PDF
    INTRODUCTION: Diet and exercise influence the risk of cognitive decline (CD) and dementia through the food metabolome and exercise-triggered endogenous factors, which use the blood as a vehicle to communicate with the brain. These factors might act in concert with hippocampal neurogenesis (HN) to shape CD and dementia. METHODS: Using an in vitro neurogenesis assay, we examined the effects of serum samples from a longitudinal cohort (n = 418) on proxy HN readouts and their association with future CD and dementia across a 12-year period. RESULTS: Altered apoptosis and reduced hippocampal progenitor cell integrity were associated with exercise and diet and predicted subsequent CD and dementia. The effects of exercise and diet on CD specifically were mediated by apoptosis. DISCUSSION: Diet and exercise might influence neurogenesis long before the onset of CD and dementia. Alterations in HN could signify the start of the pathological process and potentially represent biomarkers for CD and dementia.Identification of dietary modulators of cognitive ageing and brain plasticity and proof of concept of efficacy for preventing-reversing cognitive declin

    Dietary factors and brain health

    No full text
    PURPOSE OF REVIEW: Nutrition is a complex exposure (i.e., the food exposome) that influences brain function and health through multiple pathways. We review recent epidemiological studies that have improved the characterization of the food exposome and brain health in humans and have revealed promising nutrition-based strategies to prevent cognitive aging. RECENT FINDINGS: A selection of epidemiological research from the past 18 months of both observational and clinical studies is presented, with a focus on novel findings, including novel nutrient and diet patterns, diet-related approaches to rescue brain energetics defects in aging, and biomarker-based studies to decipher specific neurobiological pathways of nutrition and brain health. SUMMARY: Although healthy diets such as the Mediterranean diet promote brain health throughout life, specific diets, such as the Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay diet, or specific nutrients (LC n-3 polyunsaturated fatty acids, carotenoids, vitamin D, B vitamins, polyphenols) alone or in combination, may prevent cognitive aging. Diet management approaches to rescue brain energetics defects such as the Modified Mediterranean-ketogenic diet may be promising to prevent neurodegenerative diseases. Expanding research also suggests that promotion of a healthy gut microbiome through prebiotic foods may preserve the diet-gut-brain axis with aging. Future studies should explore more individualized preventive approaches through a 'precision nutrition' framework

    Curr Nutr Rep

    No full text
    PURPOSE OF REVIEW: Worldwide, approximately 50 million people have dementia (mostly Alzheimer's disease). Dementia results from a multicomponent pathophysiology that follows complex dynamics over many years before symptoms become apparent. Nutrition may represent a target of choice for the primary prevention of dementia; however, there is still no firm answer on how to prevent dementia efficiently. We provide a broad overview of recent studies leveraging system biology and life-long epidemiology to address the multidimensionality and dynamical patterns underlying dementia and improve knowledge on the link between nutrition, cardiometabolic health and dementia risk. RECENT FINDINGS: The aging of reference population-based cohort studies, the increasing availability of cutting-edge biomarkers (e.g., brain imaging, metabolomics) and the refinement of statistical tools to model complex exposures and dynamical health outcomes have yielded substantial progress in the understanding of dementia. Systems biology coupled with life-course epidemiology will pave the way toward novel precision nutrition approaches for prevention and management of dementia

    Eur J Epidemiol

    No full text
    Higher coffee consumption has been associated with reduced dementia risk, yet with inconsistencies across studies. CYP1A2 polymorphisms, which affects caffeine metabolism, may modulate the association between coffee and the risk of dementia and Alzheimer's disease (AD). We included 5964 participants of the Three-City Study (mean age 74 years-old), free of dementia at baseline when they reported their daily coffee consumption, with available genome-wide genotyping and followed for dementia over a median of 9.0 (range 0.8-18.7) years. In Cox proportional-hazards models, the relationship between coffee consumption and dementia risk was modified by CYP1A2 polymorphism at rs762551 (p for interaction = 0.034). In multivariable-adjusted models, coffee intake was linearly associated with a decreased risk of dementia among carriers of the C allele only ("slower caffeine metabolizers"; HR for 1-cup increased [95% CI] 0.90 [0.83-0.97]), while in non-carriers ("faster caffeine metabolizers"), there was no significant association but a J-shaped trend toward a decrease in dementia risk up to 3 cups/day and increased risk beyond. Thus, compared to null intake, drinking ≥ 4 cups of coffee daily was associated with a reduced dementia risk in slower but not faster metabolizers (HR [95% CI] for ≥ 4 vs. 0 cup/day = 0.45 [0.25-0.80] and 1.32 [0.89-1.96], respectively). Results were similar when studying AD and another CYP1A2 candidate polymorphism (rs2472304), but no interaction was found with CYP1A2 rs2472297 or rs2470893. In this cohort, a linear association of coffee intake to lower dementia risk was apparent only among carriers of CYP1A2 polymorphisms predisposing to slower caffeine metabolism.COGINUT : Cognition, anti-oxydants, acides gras: approche interdisciplinaire du rôle de la nutrition dans le vieillissement du cervea

    Management of Cancer-Related Cognitive Impairment: A Systematic Review of Computerized Cognitive Stimulation and Computerized Physical Activity

    No full text
    Cancer-related cognitive impairment (CRCI) occurs frequently in patients living with cancer, with consequences on quality of life. Recently, research on the management of these difficulties has focused on computerized cognitive stimulation and computerized physical activity programs. This systematic review presents the state of knowledge about interventions based on computerized-cognitive stimulation and/or physical activity to reduce CRCI. The review followed the PRISMA guidelines. A search was conducted in PUBMED and Web of Science databases. Risk of bias analysis was conducted using the Rob2 tool and the quality of evidence was conducted following the GRADE approach. A total of 3776 articles were initially identified and 20 of them met the inclusion criteria. Among them, sixteen investigated computerized-cognitive stimulation and four computerized-physical activity. Most of the studies were randomized controlled trials and assessed the efficacy of a home-based intervention on objective cognition in adults with cancer. Overall, cognitive improvement was found in 11/16 computerized-cognitive stimulation studies and 2/4 computerized-physical activity studies. Cognitive stimulation or physical activity improved especially cognitive complaints, memory, and attention. These results suggest the efficacy of both computerized-cognitive stimulation and physical activity. However, we report a high risk of bias for the majority of studies and a low level of quality of evidence. Therefore, further investigations are needed to confirm the efficacy of these interventions and to investigate the possible added benefit on cognition of a combined computerized-cognitive/physical intervention

    Neurology

    No full text
    Objective To use network science to model complex diet relationships a decade before onset of dementia in a large French cohort, the 3-City Bordeaux study. Methods We identified cases of dementia incident to the baseline food frequency questionnaire over 12 years of follow-up. For each case, we randomly selected 2 controls among individuals at risk at the age at case diagnosis and matched for age at diet assessment, sex, education, and season of the survey. We inferred food networks in both cases and controls using mutual information, a measure to detect nonlinear associations, and compared food consumption patterns between groups. Results In the nested case-control study, the mean (SD) duration of follow-up and number of visits were 5.0 (2.5) vs 4.9 (2.6) years and 4.1 (1.0) vs 4.4 (0.9) for cases (n = 209) vs controls (n = 418), respectively. While there were few differences in simple, average food intakes, food networks differed substantially between cases and controls. The network in cases was focused and characterized by charcuterie as the main hub, with connections to foods typical of French southwestern diet and snack foods. In contrast, the network of controls included several disconnected subnetworks reflecting diverse and healthier food choices. Conclusion How foods are consumed (and not only the quantity consumed) may be important for dementia prevention. Differences in predementia diet networks, suggesting worse eating habits toward charcuterie and snacking, were evident years before diagnosis in this cohort. Network methods, which are designed to model complex systems, may advance our understanding of risk factors for dementia
    corecore