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Methods: We studied participants from the Three-City study, a multicentric cohort of older persons, free of
dementia at time of blood sampling, and who provided repeated measures of cognition over 12 subsequent
years. We measured 189 serum lipids from 13 lipid classes using shotgun lipidomics in a case-control sample
on cognitive decline (matched on age, sex and level of education) nested within the Bordeaux study center
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Dementia v regression, and tested for validation in the Dijon study center (validation, n = 314).
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Findings: Among 17 lipids identified in the discovery stage, lower levels of the triglyceride TAG50:5, and of
four membrane lipids (sphingomyelin SM40:2,2, phosphatidylethanolamine PE38:5(18:1/20:4), ether-phos-
phatidylethanolamine PEO34:3(16:1/18:2), and ether-phosphatidylcholine PCO34:1(16:1/18:0)), and higher
levels of PCO32:0(16:0/16:0), were associated with greater odds of cognitive decline, and replicated in our
validation sample.
Interpretation: These findings indicate that in the blood lipidome of non-demented older persons, a specific
profile of lipids involved in membrane fluidity, myelination, and lipid rafts, is associated with subsequent
cognitive decline.
Funding: The complete list of funders is available at the end of the manuscript, in the Acknowledgement sec-
tion.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in Context

Evidence before this study

While cognitive decline and dementia evolve slowly over years,
a long-term prospective approach is critical to identify early
biomarkers and etiological risk pathways. Prior lipidomics stud-
ies were often cross-sectional or with short follow-up, and
were thus as likely to reveal lipid changes due to deteriorating
cognitive health as to reflect causal pathways.

Added value of this study

Our prospective approach, where investigation of the blood lip-
idome precedes ascertainment of cognitive decline over
12 years, enhanced by a validation effort, provides a methodo-
logically robust early signature of cognitive aging in the blood
lipidome.

Implications of all the available evidence

Our findings extend preliminary evidence suggesting a dysre-
gulation of the blood lipidome toward decreasing membrane
lipids (involved in neurone membrane fluidity, myelination
and lipid raft microdomains), as a very early biomarker in the
course of cognitive decline.

neurodegenerative diseases such as late-onset Alzheimer’s disease
(AD) [1-3]. Epidemiological studies have shown that elevated blood
cholesterol and triglycerides in midlife, and lower blood levels of
omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) are asso-
ciated with higher risks of cognitive impairment and dementia [4,5].
Neuropathological studies further reported AD brains to contain an
abnormal composition of two major classes of brain phospholipids,
i.e. phosphatidylcholines (PC) and phosphatidylethanolamines (PE)
[6,7]. Although this suggests a role for specific lipids in brain aging
and cognitive function, a more complete picture of the lipid profiles
and changes in lipid metabolism that could help understand cogni-
tive changes with aging is lacking at the systematic level.

Lipidomics is a technology that may help better understand the
overall pattern of lipid (dys)regulation in relation to brain aging as it
allows to investigate hundreds of lipids and their metabolites in bio-
logical fluids and tissues. For example, the blood lipidomics studies
conducted thus far in AD and cognitive impairment have revealed
promising associations with (i) apolar lipids, including triglycerides
[8-10] and cholesterol esters (CE) [8,11] and with (ii) polar, struc-
tural lipids, which are incorporated in cell membranes (e.g., PC
[8,10—22], sphingomyelins [SM] [9,10,18-21,23,24], and ceramides
[Cer] [10,21,23,24]). However, most of these studies failed to measure
PE, i.e. a main class of lipids that is strongly altered in AD brain
[7,25,26]. In addition, previous studies were often cross-sectional or
with short follow-up and their data have thus most likely been influ-
enced by behavioral and metabolic changes due to the deteriorating
cognitive health itself (i.e., reverse causation).

Brain aging is a heterogeneous process driven by both normal
aging and pathology (i.e., dementia and AD); both are closely related
(e.g., aging is the primary risk factor for dementia), share many risk
factors and underlying mechanisms, and together determine an indi-
vidual's course of cognitive decline. In dementia and AD science,
there is therefore a strong biological rationale to investigate the con-
tinuum of brain aging globally, through cognitive decline [27]. As
brain aging evolves slowly over the years, a long-term prospective
approach is critical if one wants to study metabolic profiles in relation
to early biomarkers and etiological risk pathways. So far, few groups
have taken such a prospective approach. In addition, while

reproducibility is critical in -omics studies, validation in an external
sample was rarely performed, and lipidomics studies in relation to
cognitive  impairment often had inconsistent  results
[13,17-19,23,28].

The large Three-City (3C) cohort study provides unique prospec-
tive data to decipher molecular signatures of accelerated cognitive
decline. Our objective was to identify, in the 3C study, a robust and
valid serum lipid signature associated with subsequent cognitive
decline 12 years later.

2. Methods
2.1. Study population

The 3C study is an ongoing multicentric population-based cohort
on dementia that was initiated in 1999-2000. It included 9 294 non-
institutionalized community dwellers aged 65 years and older from
three study centers in France: Bordeaux (South-West, n = 2 104),
Dijon (Middle-East, n = 4 931), and Montpellier (South, n = 2 259)
[29]. Data collected at baseline included sociodemographic and life-
style characteristics, medical information, neuropsychological test-
ing, blood pressure, and anthropometric measurements. Fasting
serum was sampled for the formation of a biobank. Follow-up visits
were scheduled every two to three years after baseline examination.
At each visit, participants underwent a battery of neuropsychological
tests administered by a trained psychologist during face-to-face
interviews. Diagnosis of dementia was established by a committee of
neurologists after review of all existing information (including MRI
when available) using the Diagnostic and Statistical Manual of Mental
Disorders, (4th Edition) [30,31].

2.2. Ethics

The Consultative Committee for the Protection of Persons partici-
pating in Biomedical Research at Kremlin-Bicétre University Hospital
(Paris, France) approved the 3C study protocol (CPP n°99-28, June
10, 1999) and all participants provided informed consent. Personal
data were anonymized prior to analysis.

2.3. Nested case-control sampling

In 2016, an ancillary study was initiated in 3C to investigate
metabolomics and lipidomics profiles in relation to subsequent tra-
jectories of cognitive decline [32]. This omics sub-study was based on
a case-control study on cognitive decline, nested within the Bordeaux
study center. Eligible participants had serum samples available in the
biobank, no dementia diagnosis at the time of blood draw at baseline,
and at least one repeated cognitive examination over the subsequent
12 years (with a median of three and a maximum of five repeated
examination at visit V=2, 4, 7, 10 and 12 years) (Fig. 1).

To build the case-control study on cognitive decline, we used as
primary outcome the change in a composite score of global cognition,
including the multiple cognitive domains impaired in dementia. The
composite score was defined at each follow-up as the average of Z-
scores of five neuropsychological tests: (i) the Mini-Mental State
Examination (assessing global cognitive performance) [33], (ii) the
Benton Visual Retention Test (assessing visual working memory and
attention) [34], (iii) the Isaac’s Set Test (assessing verbal fluency)
[35], (iv) the Trail-Making Test part A (assessing processing speed)
[36], and (v) the Trail-Making Test part B (assessing executive func-
tioning) [36].

We estimated individual slopes of cognitive change using linear
mixed models robust to informative dropout (i.e., a mixed model spe-
cific to each pattern of follow-up) [37]. The repeated composite cog-
nitive scores were normalized using a latent process mixed model (to
ensure Gaussian assumption) [38] before being entered as a
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Fig. 1. Flowchart of case-control sampling in the discovery sample

* For each case (with last cognitive measure in visit Vmax), potential controls included participants: (i) followed at least up to Vmax, (ii) not defined as a case in Vmax, (iii) with a
slower decline up to Vmax (i.e., with a slope of cognitive change better than the median when only using repeated cognitive data up to Vmax).

dependent variable in the linear mixed model. The model included an
intercept (that represented the level of composite cognitive score at
baseline), a slope (that represented the annual change in scores over
time), both a random intercept and a random slope to account for
inter-individual variability (as well as a binary indicator for the first
cognitive assessment). To account for informative dropout, we used
pattern mixture modeling that reduces potential bias due to informa-
tive attrition in longitudinal studies [37]. Participants were combined
into four groups on the basis of their last available measurement at V
=4, 7,10 or 12 years of follow-up: Group 1 with pattern of follow-up
{1,0,0,0}; Group 2 with patterns {1,1,0,0} or {0,1,0,0}; Group 3 with
patterns {1,1,1,0}, {0,1,1,0}, {1,0,1,0} or {0,0,1,0}; and Group 4 with
patterns {1,1,1,1}, {0,1,1,1}, {1,0,1,1}, {1,1,0,1}, {0,0,1,1}, {0,1,0,1},
{1,0,0,1} or {0,0,0,1}, where 0 indicates missing and 1 indicates
observed for each of the four time points of observation. This resulted
in four groups representing a monotone missing-data pattern
(assuming that intermittent missing observations are missing at ran-
dom). We ran a mixed model specific to each of these four pattern
groups. From these models, we extracted individual slopes (as the
sum of estimated fixed effect + predicted individual random effect).

Cases were identified as the 220 participants with the worst slopes
of cognitive decline (a number slightly higher than the 200 cases ini-
tially planned in the ancillary study, to allow for loss of a few cases for
which no matched control would be found during the subsequent
matching procedure). Among the individuals still in the cohort at the
last visit of the case (noted Vmax), we randomly selected a control
according to the following criteria: (i) same age (+3 years), sex and
educational level (<vs > secondary school), and (ii) a slope of cogni-
tive change up to Vmax better than the median. Overall, 209 cases
were successfully individually matched to one control, leading to a
total sample size of n = 418 subjects. Mean follow-up of cases was
8.9 years (sd=2.6 years), with 29, 72, 54 and 54 cases sampled at V = 4,
7, 10 and 12 years respectively. Average slopes in cases and controls
were —0.26 (95% CI —0.36; —0.16) and —0.07 (95% CI —0.11; —0.03)
standard units/years respectively (refer to Supplementary Table S1 for
average neuropsychological test scores at each visit).

For validation purpose, a second case-control sample was built
within the Dijon study center (with sample size limited to 157 case-
control pairs due to budget restrictions). Mean follow-up of cases
was 4.3 years (sd=1.6), with 131, 26 and 3 cases sampled at V = 4, 7

and 10 years, respectively. Average slopes in cases and controls were
—0.38 (95%CI —0.44; —0.32) and —0.14 (-0.20; —0.08) standard
units/years, respectively.

2.4. Assessment of serum lipids

Fasting serum samples collected at baseline were stored at —80 °C
in a biobank until use. Lipid extraction and shotgun mass spectrome-
try analyses were conducted by Lipotype GmbH (Dresden, Germany)
[39]. The Lipotype Shotgun Lipidomics platform consists of the auto-
mated extraction of samples, an automated direct sample infusion
and high-resolution Orbitrap mass spectrometry including lipid
class-specific internal standards to assure absolute quantification of
lipids. An in-house developed software — LipotypeXplorer — is used
for identification of lipids in the mass spectra [40,41]. Details are pro-
vided in Supplementary Method 1.

We assumed missing values to be mostly due to concentrations
under the limit of quantification. Missing values affect the correlation
between variables and deteriorate the performance of multivariate
analyses. As previously suggested [42], to reduce the influence of
missing values in the analysis, we studied only lipid species with
>80% non-missing values in either the cases or the controls (discov-
ery and validation samples were pooled at this stage, to ensure the
selection of a common set of lipids). The remaining missing values
were imputed to zero. Lipids were expressed as percentages of total
lipids (to correct for variability in total lipid) and standardized. A
description of lipids in the control reference samples is provided in
Supplementary Table S2.

2.5. Statistics

2.5.1. Discovery analysis

In descriptive analyses, lipidomics data were investigated at the
lipid class level. The correlation structure of the lipidome was
described using a Spearman correlation network.

In multivariable exploratory analyses, we used Least Absolute
Shrinkage and Selection Operator (LASSO)-penalized conditional
logistic regression [43] — a variable selection regression method
based on a penalization in the estimation of regression parameters,
adapted to the analysis of matched case-control data. As LASSO may
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lead to unstable solutions (in part due to the influence of extreme
values), we enhanced the robustness of the modeling strategy by
repeating the model with a thousand bootstrapped samples (i.e., ran-
domly resampling cases and matched controls) [44]. We thus applied
a bootstrapped version of LASSO-penalized conditional logistic
regression to identify lipids robustly associated with the odds of cog-
nitive decline in the case-control study (our general methodology is
detailed in Supplementary Figure 1). Models were conditioned on
matching variables and were adjusted for BMI, total number of medi-
cations regularly consumed, and use of lipid-lowering treatment (sta-
tins and fibrates). For each sample, the optimal LASSO-penalty was
chosen as the one providing maximum likelihood by leave-pair-out
cross validation, allowing the selection of the most predictive set of
lipids. We calculated the frequency of selection of each lipid across
the 1000 bootstrapped samples.

The serum lipid signature associated with cognitive decline was
defined from the lipids selected in at least 60% of the bootstrapped
samples. There is no gold-standard for the choice of such threshold.
This cut-off was chosen post hoc, as a reasonable tradeoff to optimize
the likelihood of the signature to represent a true signal (i.e., includ-
ing lipids selected in many bootstraps), while favoring findings
obtained in the original sample (i.e., avoiding too many lipids
selected in bootstrapped samples but not in the original sample).

In a subsequent step, we defined a lipid signature score based on
unbiased regression coefficients by entering the lipids selected in the
signature in an unpenalized conditional logistic regression (confidence
intervals were not estimated at this step as they are known to be
biased due to post-selection inference) [45]. To limit overfitting, the
association of the lipid signature score with cognitive decline was eval-
uated using leave-pair-out cross-validation (i.e., computing the lipid
signature score of each pair using regression coefficients estimated in
the discovery case-control sample deprived of this pair) [46].

Finally, in sensitivity analyses on the discovery stage, we used
lipid intensity values expressed as absolute concentrations (pmol/
L) instead of proportions of total lipid concentrations (used in the
main analysis).

2.5.2. Validation analysis

We used two different approaches for validation of our signature.
As the discovery was based on a multivariate approach, we first
focused on the overall lipid signature and evaluated whether the sig-
nature score as defined in the discovery stage was also associated
with cognitive decline in the validation sample. Second, we examined
multivariate associations of each individual lipid included in the sig-
nature with cognitive decline in the validation sample. Odds ratios
were estimated using a conditional logistic regression including all
lipids simultaneously, conditioned on matching variables and
adjusted for BMI, the number of drugs consumed and the use of
lipid-lowering treatment. Lipids were considered replicated if they
were associated with cognitive decline in the same direction as in the
discovery sample and with a statistical threshold at p<0.10.

2.5.3. Supplementary analyses

We evaluated the impact of APOE-¢4 or diabetes in our findings in
several ways. First, we evaluated possible confounding by APOE-£4 or
diabetes in the relation of each selected lipid and of the signature
score with cognitive decline. Second, we investigated effect modifica-
tion by testing for an interaction between the lipid signature score
and both APOE-¢4 and diabetes on cognitive decline.

Statistical analyses were performed using R software version 3.6.1
(igraph 1.2.4.1, penalized 0.9—51, and survival 2.44—1.1 packages).

2.6. Role of funders

Funders had no role in study design, data collection, data analyses,
interpretation or writing of report.

3. Results
3.1. Discovery stage

Participants were 76 years-old on average at blood draw, 66%
were female and approximately 29% reached secondary school
(Table 1; left column). Compared with controls, individuals with cog-
nitive decline were twice as often carriers of the APOE-¢4 allele, were
almost three-times more often diabetics, consumed more medica-
tions, and had slightly lower global cognitive performances (as indi-
cated by the Mini Mental State Examination) at baseline.

3.1.1. Description of the lipidome

The analytical pool comprised 189 lipids belonging to 13 classes:
(i) apolar species, including diacylglycerols (DAG, n = 6), triacylglycer-
ols (TAG, n = 37), free cholesterol (Chol), and cholesterol esters (CE,
n =16), and (ii) polar (structural) species, including phosphatidylcho-
lines (PC, n = 48), phosphatidylethanolamines (PE, n = 7), phosphati-
dylinositols (PI, n = 13), lysophosphatidylcholines (LPC, n = 6),
lysophosphatidyl-ethanolamines (LPE, n = 2), ether-phospholipids
(possibly plasmalogens) ether-PC (PCO, n = 29) and ether-PE (PEO,
n = 8), sphingomyelins (SM, n = 11), and ceramides (Cer, n = 5). The
apolar lipids TAG, Chol and CE accounted for >70% of total lipid con-
centration. Among polar lipids, PC was the most frequent class,
accounting for 21% of total lipids, while the other polar species were
less concentrated (<5%) in the lipidome (Fig. 2A). Relative percentage
differences between cases and controls were generally small (around
1%; Fig. 2B), and not statistically significant at the lipid class level (all
p>0.05 for univariate conditional logistic regressions). The correla-
tion network of the lipidome revealed strong Spearman correlations
between: (i) lipids belonging to the same class (e.g., SM class, at the
top-right of Fig. 2C) and (ii) lipids with a similar fatty acid composi-
tion (e.g., long chain CE/PC with polyunsaturated fatty-acids 20:5/
22:6, at the top-left of Fig. 2C).

3.1.2. Identification of a serum lipid signature of subsequent cognitive
decline

The bootstrap-LASSO discovery analysis identified a signature of
17 lipids associated with cognitive decline (Fig. 3). This signature was

Table 1

Baseline characteristics of cases of cognitive decline and matched controls in the
discovery (n = 209 case-control pairs) and validation (n = 157 case-control pairs)
samples.

Discovery sample Validation sample

Baseline characteristics Cases Controls  Cases Controls
Age (years) 759 (45) 75.7(42) 765(52) 76.1(4.8)
Sex, female 66.0 66.0 62.4 62.4
Education, > secondary school 28.7 28.7 318 31.8
APOE-¢4 carrier 26.2 12.0 26.8 19.1
BMI (kg/m?) 26.8(44) 26.1(3.6) 25.5(4.5) 25.0(3.7)
Number of drugs consumed 5[3-7] 4[3-6] 5[3-7] 4[3-5]
Lipid-lowering treatment 335 36.4 31.2 293
Diabetes' 13.2 5.7 121 6.4
Hypertension® 78.5 76.1 80.9 83.4
Current smoker 48 43 7.0 2.6
History of cardiovascular 335 27.8 42.0 299
diseases
Plasma triglycerides (mmol/L) 14(08) 1.3(06) 1.3(0.6) 1.2(0.5)
Plasma total cholesterol 58(1.0) 5.8(09) 58(1.0) 5.8(0.9)
(mmol/L)

MMSE score (range 0—30) 26.9(2.2) 28.0(1.6) 25.7(24) 28.7(1.0)

Values are mean (SD), median [IQR] or percentages.

1 Fasting glucose >7.2 mmol/L or specific medication.

2 Blood pressure >140/90 mmHg or specific medication.
Abbreviations: APOE-¢4, allele ¢4 for the apolipoprotein E gene; BMI, Body Mass
Index; MMSE, Mini-Mental State Examination.
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amines; MC, medium-chain, MUFA, monounsaturated fatty acid; PC, phosphatidylcholines; PCO, ether-phosphatidylcholines; PE, phosphatidylethanolamines; PEO, ether-phospha-
tidylethanolamines; PI, phosphatidylinositol; SC, short-chain; SM, sphingomyelins; TAG, triglycerides.

largely dominated by polar lipids, including: PC and short-chain PCO
(representing half of the 17 lipids); a few PI and PE/PEO species; and
the sphingomyelin SM40:2,2. Apolar lipids were less dominant in the
signature and were represented by a few unsaturated TAG species
(see Fig. 3 for specific names of each of the 17 lipids).

Sensitivity analyses using lipids expressed in pmol/uL yielded
comparable results.

3.2. Validation stage

Characteristics of the validation sample were generally similar to
those of the discovery sample, except that cases of the validation
sample were slightly older in age (76.3 versus 75.8 years-old) and
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Fig. 3. The serum lipid signature selected in the discovery stage

Lipids were ranked by decreasing frequency of selection across bootstraps. Only
top 50 lipids are displayed. Dark gray bars indicate lipids selected on the initial LASSO
regression model, and light gray bars indicate those selected across bootstrapped sam-
ples only. We retained the 17 lipids selected in >60% of bootstraps (with names
highlighted in color).

had more often history of vascular conditions (42.0 vs 33.5%); more-
over, compared to the discovery sample, cases of the validation sam-
ple had slightly lower global cognitive performances at baseline
(MMSE=25.7 vs 26.9) (Table 1; right column).

The lipid signature score was associated with greater cognitive
decline in both discovery and validation stages (OR for 1SD-increase
in score=3.39 and 1.39 [95% CI 1.08—1.78], respectively). In secondary
analyses on individual lipids, we replicated 6 out of the 17 lipids
(Fig. 4). Lower levels of five lipids, including TAG50:5 (ORs for 1SD-
decrease=2.61 and 1.44 [0.96-2.17] in discovery and validation,
respectively), PE38:5(18:1/20:4) (138 and 132 [0.97-1.81]),
PC0O34:1(16:1/18:0) (1.53 and 1.50 [1.04—2.16]), PEO34:3(16:1/18:2)
(111 and 131 [0.96-1.79]), and SM40:2,2 (1.99 and 1.69
[1.19-2.40]), and higher level of PC032:0(16:0/16:0) (OR for 1SD-
increase=1.85 and 1.58 [0.93—2.66] in discovery and validation) were
associated with greater cognitive decline.

In supplementary analyses further controlling for APOE-¢4 or dia-
betes, associations of either individual lipids or the signature score
with cognitive decline were virtually unchanged (results not shown).
Furthermore, we found evidence of effect modification by APOE-&4,
yet limited to the validation sample, where the lipid signature score
was more strongly associated with cognitive decline in APOE-¢4 car-
riers (OR for 1SD-increase in score=2.51 [95% CI 1.32—4.78] and 1.26
[0.95-1.67] in APOE-¢4 carriers vs non-carriers respectively; P for
interaction=0.04). However, when examining individual lipids, we
found no evidence of effect modification by APOE-¢4 for any of the
lipid identified in the signature (P for interaction >0.10 in validation
sample). No evidence of interaction with APOE-¢4 was found in the
discovery sample, and there was no significant interaction with dia-
betes in any sample.

4. Discussion

In this prospective population-based study, we discovered and
validated a robust lipid signature within the serum lipidome of non-
demented participants that was strongly associated with their subse-
quent cognitive decline over 12 years. Among the six lipids success-
fully validated, lower levels of triglyceride TAG50:5 and four
membrane lipids (a phosphatidylethanolamine [PE38:5(18:1/20:4)],
two ether-phospholipids [PC034:1(16:1/18:0), PE034:3(16:1/18:2)],
and a sphingomyelin [SM40:2,2]), and higher levels of the ether-
phospholipid PCO32:0(16:0/16:0) were associated with greater odds
of cognitive decline. Moreover, association of the overall lipid
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Fig. 4. Multivariate associations of the 17 lipids from the serum lipid signature
with the odds of subsequent cognitive decline in the discovery (n =418) and valida-
tion (n = 314) case-control samples.

0dds Ratios were estimated using a conditional logistic regression including all lip-
ids simultaneously, conditioned on matching variables (age at blood draw, sex and
level of education) and adjusted for Body Mass Index, the number of drugs consumed
and the use of lipid-lowering treatment. ORs are for a 1 SD-increase (1) or 1 SD
decrease () of proportion to total lipids in serum (note that we imposed all discovery
ORs to be greater than 1, to reflect the magnitude of the beta coefficients included in
the prediction risk score; the sign of regression coefficients is reflected by the direction
of arrows [increasing arrow = positive coefficient, i.e., increasing lipid level increases
risk of cognitive decline; decreasing arrow = negative coefficient, i.e., decreasing lipid
level increases risk). Confidence intervals are not valid in post-selection inference and
were thus not estimated in the discovery sample.

signature with cognitive decline seemed stronger among APOE-¢4
carriers, although evidence was limited to the validation sample.

So far, very few prospective studies have examined associations
between the blood lipidome and subsequent cognitive impairment
or incident dementia or AD, and most of them had a small to moder-
ate follow-up [13,15-19,28,47,48,22]. Moreover, lipidomics is a rap-
idly evolving field, and our shotgun approach enabled the inclusion
of rare species such as PE/PEOQ, that have seldom been investigated in
relation to cognitive outcomes in earlier studies (e.g., many studies
used the Biocrates platform [Absolute IDQ p180 kit] that does not
include PE/PEO) [13,15,17—-19,22]. In addition, not only does the gen-
eral structure (e.g., head group [e.g., phosphocholine], total length
and saturation) matters, but also the fatty acid composition of lipids
influences their metabolism and biological effects, and the level of
detail for these molecular characterizations differs greatly between
analytical platforms [19,28,47]. As a result, the heterogeneity
between lipidomics studies in terms of epidemiological design and
analytical platform limits their comparability [49].

Overall, previous lipidomics studies have suggested a potential
dysregulation of PCO species early in the development of cognitive
impairment/AD [13,15—-19]. In an untargeted metabolomics study,
the only statistically significant difference in the entire metabolome
of AD participants compared to controls was lower blood levels of
one cluster of PCO/plasmalogens [16]. These findings are generally in
line with our results, where PCO emerged as a key class of lipids in

our signature. Interestingly, one PCO from our signature, i.e. PCO34:2,
was associated with a greater risk of AD in the Baltimore Longitudinal
Study of Aging [18], and consistently, with a greater cognitive decline
in our validation stage. Surprisingly, however, the association of this
lipid with cognitive decline was in the opposite direction in the dis-
covery stage. Overall, when looking into the details of the species,
there has been very few overlap across studies in the literature, and
conflicting directions of association were reported in relation to cog-
nitive impairment/AD (see reviews) [50,51].

Furthermore, while the total pool of blood triglycerides has been
associated with higher cognitive decline [4], some lipidomics studies,
that allow molecular characterization of specific species, have yielded
opposite results. Such studies for instance reported reduced plasma
levels of specific triglycerides in AD patients [8,9], and an inverse
association between the proportion of triglycerides in Very Low Den-
sity Lipoprotein and the risk of dementia [28]. The biological reason
for such inverse associations remains unclear and deserves further
research.

As with the global lipidome, previous studies focusing on specific
lipid classes have also been inconsistent. Our findings of a higher cogni-
tive decline with lower blood SM40:2,2 levels are consistent with two
cross-sectional studies that also linked lower blood SM levels to AD sta-
tus and to lower total brain volume [21,52]. However, prospective
studies have yielded heterogeneous results [18,19,23,24]. For example,
in one of the largest studies conducted to date on the blood sphingo-
lipidome and dementia risk, higher blood SM levels were associated
with an increased risk of AD in men, but a reduced risk in women (i.e.,
an interaction with sex, that we did not found in our study) [24].
Finally, our prospective study supports and extends previous results on
reduced levels of PEO plasmalogens in both the brain and blood of AD
patients, even at the earliest stages of the disease [26,53].

Validation has been rarely performed in previous lipidomics stud-
ies, which certainly contributes to the divergence of results in the liter-
ature. Yet, validation is critical in research on blood biomarkers of
cognitive aging and dementia, as there is an inherent and large hetero-
geneity across studies due to the complexity of labile exposures, such
as the lipidome, and of the outcomes with long-term evolutions, like
cognitive aging and dementia. For instance, although derived from the
same cohort study, the characteristics of our validation sample were
quite different from the discovery sample (e.g., participants were older,
had slightly lower cognitive performances and more vascular risk fac-
tors at baseline). Despite these differences, we could still replicate
both our global signature and some specific individual lipids as well,
which suggests our findings captured a biologically relevant signature.

The lipid signature we identified may indeed play an important
and biologically relevant role in brain aging. For example, SM and
ether phospholipids like PCO/PEO, with their most abundant species
being plasmalogens, are enriched in the myelin sheath and are key
components of “lipid rafts” [1,54]. They are relevant for these specific
membrane microdomains, which act as dynamic platforms for sev-
eral cellular processes, including signaling pathways, molecular traf-
ficking and protein interactions [1]. Lipid rafts further play a critical
role in neurotransmission and synaptic plasticity [55], all essential
for proper cognitive functioning and in addition, their structure and
composition have recently been shown to influence amyloid beta
production in AD [56]. Furthermore, phospholipids with unsaturated
acyl chains are enriched in neuronal membranes and contribute to
their fluidity [57]. It has been hypothesized that AD could be closely
related to imbalances in the proportion of unsaturated fatty acids
(decreasing) versus saturated fatty acids (increasing) in membrane
phospholipids [58]. Accordingly, we found lower levels of one PE
with two unsaturated fatty acids (PE38:5(18:1/20:4)) and higher lev-
els of one saturated PCO (PC032:0(16:0/16:0)) associated with
greater cognitive decline.

The main strengths of our study are: (i) a prospective population-
based design with a long term follow-up for cognition that allowed
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us to capture lipid alterations at the very beginning of development
of cognitive decline, (ii) the inclusion of a validation sample with a
harmonized design and similar analytical platform, and (iii) a robust
and novel analytical strategy for both biochemistry (shotgun lipido-
mics) and statistical analyses (bootstrap LASSO, controlling for a
number of risk factors). Such a robust methodology has been seldom
used in previous studies and clearly represents an added value of our
study.

However, our study has also some limitations. First, lipid measure-
ments were only available at a single time-point and we were thus
unable to examine the stability of our results over time. It is likely that
signatures within the lipidome vary according to dementia stages,
and future studies should examine the dynamics of lipid changes as
cognitive aging develops. Second, we did not have information on the
fatty acid composition/position/family of all lipids; for example, the
fatty acids composition of TAG species was unknown and we were
not able to differentiate arachidonic acid (an omega-6 LC-PUFA) from
its omega-3 isomer in our phospholipid analysis. Third, although we
have addressed many methodological issues, methodological limita-
tions still persist. For example, moderate sample size may have
yielded false negative results, and a similar study should therefore be
conducted in a larger independent cohort. Moreover, we used an
extreme-phenotyping strategy for achieving good statistical power
under sample size limitations; despite being limited by use of a
matched case-control design, measurement error in estimation of
associations induced by such strategy is still possible. In addition, we
have attempted to minimize confounding by multiple covariate
adjustments, but residual confounding is always an issue in observa-
tional studies. Fourth, although dementia and AD are primary causes
of accelerated cognitive decline (accordingly, 51% and 52% of cases
developed incident dementia during follow-up in the discovery and
validation sample respectively, versus <3% of controls), the present
case-control study was designed to examine cognitive decline and did
not allow a methodologically accurate investigation of incident
dementia. Last, results from this study depend on a specific case-con-
trol design and may not be generalizable to other populations.

In conclusion, in a longitudinal cohort of older persons, we have
identified and replicated a signature within the serum lipidome that
was associated with subsequent cognitive decline. Our findings
mainly point to an early dysregulation of specific lipids involved in
membrane fluidity (PE), myelination and lipid rafts (SM, PCO/PEO)
and suggest that a decrease in their unsaturation level is present early
in the cognitive aging process. Whether such alterations contribute to
the pathophysiology of cognitive aging, or whether they represent
only very early biomarkers of neuronal dysfunction and death
remains to be elucidated. Anyway, these findings may further help
reveal neuroplasticity-related pathways underlying cognitive aging
and dementia, and/or allow to study the influence of specific expo-
sures (e.g., nutrition) and the role of ApoE genotype, which deserve
further research.
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