46 research outputs found

    Carbon Fluxes and Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw

    Get PDF
    Permafrost thaw in northern ecosystems may cause large quantities of carbon (C) to move from soil to atmospheric pools. Because soil microbial communities play a critical role in regulating C fluxes from soils, we examined microbial activity and greenhouse gas production soon after permafrost thaw and ground collapse (into collapse‐scar bogs), relative to the permafrost plateau or older thaw features. Using multiple field and laboratory‐based assays at a field site in interior Alaska, we show that the youngest collapse‐scar bog had the highest CH4 production potential from soil incubations, and, based upon temporal changes in porewater concentrations and 13C‐CH4 and 13C‐CO2, had greater summer in situ rates of respiration, methanogenesis, and surface CH4 oxidation. These patterns could be explained by greater C and N availability in the young bog, while alternative terminal electron accepting processes did not play a significant role. Field diffusive CH4 fluxes from the young bog were 4.1 times greater in the shoulder season and 1.7–7.2 times greater in winter relative to older bogs, but not during summer. Greater relative CH4 flux rates in the shoulder season and winter could be due to reduced CH4 oxidation relative to summer, magnifying the importance of differences in production. Both the permafrost plateau and collapse‐scar bogs were sources of C to the atmosphere due in large part to winter C fluxes. In collapse scar bogs, winter is a critical period when differences in thermokarst age translates to differences in surface fluxes. Plain Language Summary Permafrost thaw is occurring in Alaska which may result in a positive feedback to climate warming, due to the release of greenhouse gases such as CO2 and CH4 from soils. Here we examined greenhouse gas production along a gradient of “time since thaw,” hypothesizing that fluxes and microbial activities would be highest soon after thaw, and then decline. We observed highest rates of microbial activities, particularly methanogenesis, soon after thaw, coinciding with less decomposed organic matter and higher concentrations of dissolved carbon and nitrogen in soil, possibly of permafrost origin. However, field fluxes were higher in the young thaw site, compared to the older sites, in winter and not summer, a phenomenon that is currently not well understood

    Changing sand: Sandy beach ecosystem functioning after human activities

    Get PDF
    Rozema, J. [Promotor]Bodegom, P.M. van [Copromotor]Janssen, G.M. [Copromotor

    Does beach nourishment have long-term effects on intertidal macoinvertebrate species abundance?

    No full text
    Coastal squeeze is the largest threat for sandy coastal areas. To mitigate seaward threats, erosion and sea level rise, sand nourishment is commonly applied. However, its long-term consequences for macroinvertebrate fauna, critical to most ecosystem services of sandy coasts, are still unknown. Seventeen sandy beaches - nourished and controls - were sampled along a chronosequence to investigate the abundance of four dominant macrofauna species and their relations with nourishment year and relevant coastal environmental variables. Dean's parameter and latitude significantly explained the abundance of the spionid polychaete Scolelepis squamata, Beach Index (BI), sand skewness, beach slope and latitude explained the abundance of the amphipod Haustorius arenarius and Relative Tide Range (RTR), recreation and sand sorting explained the abundance of Bathyporeia sarsi. For Eurydice pulchra, no environmental variable explained its abundance. For H. arenarius, E. pulchra and B. sarsi, there was no relation with nourishment year, indicating that recovery took place within a year after nourishment. Scolelepis squamata initially profited from the nourishment with "over-recolonisation" This confirms its role as an opportunistic species, thereby altering the initial community structure on a beach after nourishment. We conclude that the responses of the four dominant invertebrates studied in the years following beach nourishment are species specific. This shows the importance of knowing the autecology of the sandy beach macroinvertebrate fauna in order to be able to mitigate the effects of beach nourishment and other environmental impacts. © 2012 Elsevier Ltd

    Temporal effects of agri-environment schemes on ditch bank plant species

    No full text
    Many of the agri-environment schemes (AES) implemented in the Western Peat District of the Netherlands have as their objective the conservation of the diversity of ditch bank plants. We investigated the effects of AES on ditch bank species in this area, using a dataset collected by 377 farmers who managed and monitored ditch banks during a 10-year period. We found that species richness has increased minimally over the last 10 years in ditch banks. Yet, we found no differences in increases in time between ditch banks with and without AES. In both ditch bank types plant species composition changed to species with higher nitrogen tolerance. Furthermore, species that disperse over long distances by water increased, whereas species with no capacity to disperse over long distances declined in both ditch bank types. This indicates that changes in vegetation composition in ditch banks are affected by other factors than AES

    A mega-nourishment creates novel habitat for intertidal macroinvertebrates by enhancing habitat relief of the sandy beach

    No full text
    Globally, sandy beaches are subject to coastal squeeze due to erosion. Soft-sediment strategies, such as sand nourishment, are increasingly applied to mitigate effects of erosion, but have long-term negative impacts on beach flora and fauna. As a more ecologically and sustainable alternative to regular beach nourishments, a mega-nourishment has been constructed along the Dutch coast by depositing 21.5 Mm3 of sand, from which sand is gradually redistributed along the coast by natural physical processes. The 'sand Motor’ mega-nourishment was constructed as a long-term management alternative for coastal protection and is the first large-scale experiment of its kind. We evaluated the development of intertidal macroinvertebrate communities in relation to this mega-nourishment, and compared it to species composition of beaches subject to regular beach or no nourishment. We found that a mega-nourishment resulted initially in a higher macroinvertebrate richness, but a lower macroinvertebrate abundance, compared to regular beach nourishment. As there was no effect of year after nourishment, this finding suggests that colonization and/or local extinction were not limiting macroinvertebrate richness at the mega-nourishment. In addition, a mega-nourishment does not converge to an intertidal macroinvertebrate community similar to those on unnourished beaches within a time scale of four years. Beach areas at the mega-nourishment sheltered from waves harbored a distinct macroinvertebrate community compared to typical wave-exposed sandy beach communities. Thus, a mega-nourishment temporally creates new habitat for intertidal macroinvertebrates by enhancing habitat relief of the sandy beach. We conclude that a mega-nourishment may be a promising coastal defense strategy for sandy shores in terms of the macroinvertebrate community of the intertidal beach
    corecore