5,935 research outputs found

    Conserving Approximations in Time-Dependent Density Functional Theory

    Get PDF
    In the present work we propose a theory for obtaining successively better approximations to the linear response functions of time-dependent density or current-density functional theory. The new technique is based on the variational approach to many-body perturbation theory (MBPT) as developed during the sixties and later expanded by us in the mid nineties. Due to this feature the resulting response functions obey a large number of conservation laws such as particle and momentum conservation and sum rules. The quality of the obtained results is governed by the physical processes built in through MBPT but also by the choice of variational expressions. We here present several conserving response functions of different sophistication to be used in the calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio

    Wick Theorem for General Initial States

    Full text link
    We present a compact and simplified proof of a generalized Wick theorem to calculate the Green's function of bosonic and fermionic systems in an arbitrary initial state. It is shown that the decomposition of the non-interacting nn-particle Green's function is equivalent to solving a boundary problem for the Martin-Schwinger hierarchy; for non-correlated initial states a one-line proof of the standard Wick theorem is given. Our result leads to new self-energy diagrams and an elegant relation with those of the imaginary-time formalism is derived. The theorem is easy to use and can be combined with any ground-state numerical technique to calculate time-dependent properties.Comment: 9 pages, 5 figure; extended version published in Phys. Rev.

    Correlation effects in bistability at the nanoscale: steady state and beyond

    Get PDF
    The possibility of finding multistability in the density and current of an interacting nanoscale junction coupled to semi-infinite leads is studied at various levels of approximation. The system is driven out of equilibrium by an external bias and the non-equilibrium properties are determined by real-time propagation using both time-dependent density functional theory (TDDFT) and many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects are described within a recently proposed adiabatic local density approximation (ALDA). In MBPT the electron-electron interaction is incorporated in a many-body self-energy which is then approximated at the Hartree-Fock (HF), second-Born (2B) and GW level. Assuming the existence of a steady-state and solving directly the steady-state equations we find multiple solutions in the HF approximation and within the ALDA. In these cases we investigate if and how these solutions can be reached through time evolution and how to reversibly switch between them. We further show that for the same cases the inclusion of dynamical correlation effects suppresses bistability.Comment: 13 pages, 12 figure

    Hipparcos open clusters and stellar evolution

    Get PDF
    By relying on recently improved Hipparcos parallaxes for the Hyades, Pleiades and Ursa Major clusters we find that stellar models with updated physical inputs nicely reproduce the location in the color magnitude diagram of main sequence stars of different metallicities. Stars in the helium burning phase are also discussed, showing that the luminosity of giants in the Hyades, Praesepe and Ursa Major clusters appears to be in reasonable agreement with theoretical predictions. A short discussion concerning the current evolutionary scenarios closes the paper.Comment: 5 pages, 6 Postscript figures, accepted by MNRA

    Normal modes of a quasi-one-dimensional multi-chain complex plasma

    Get PDF
    We studied equally charged particles, suspended in a complex plasma, which move in a plane and interact with a screened Coulomb potential (Yukawa type) and with an additional external confining parabolic potential in one direction, that makes the system quasi-one-dimensional (Q1D). The normal modes of the system are studied in the presence of dissipation. We also investigated how a perpendicular magnetic field couples the phonon modes with each other. Two different ways of exciting the normal modes are discussed: 1) a uniform excitation of the Q1D lattice, and 2) a local forced excitation of the system in which one particle is driven by e.g. a laser. Our results are in very good agreement with recent experimental findings on a finite single chain system (Phys. Rev. Lett. {\bf 91}, 255003 (2003)). Predictions are made for the normal modes of multi-chain structures in the presence of damping.Comment: 15 pages, 14 figures, accepted for publication on PR

    Ensemble v-representable ab-initio density functional calculation of energy and spin in atoms: atest of exchange-correlation approximations

    Full text link
    The total energies and the spin states for atoms and their first ions with Z = 1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable, are treated as ensemble v- representable with fractional occupations of the Kohn-Sham system. A newly developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab-initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g. in lanthanides. The spin values calculated ab-initio fit the experiment for most atoms and are almost unaffected by the choice of the xc-functional. Among the systems with incorrectly obtained spin there exist some cases (e.g. V, Pt) for which the result is found to be stable with respect to small variations in the xc-approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a non-local nature, to accurately describe such systems. PACS numbers: 31.15.

    Levels of self-consistency in the GW approximation

    Get PDF
    We perform GWGW calculations on atoms and diatomic molecules at different levels of self-consistency and investigate the effects of self-consistency on total energies, ionization potentials and on particle number conservation. We further propose a partially self-consistent GWGW scheme in which we keep the correlation part of the self-energy fixed within the self-consistency cycle. This approximation is compared to the fully self-consistent GWGW results and to the GW0G W_0 and the G0W0G_0W_0 approximations. Total energies, ionization potentials and two-electron removal energies obtained with our partially self-consistent GWGW approximation are in excellent agreement with fully self-consistent GWGW results while requiring only a fraction of the computational effort. We also find that self-consistent and partially self-consistent schemes provide ionization energies of similar quality as the G0W0G_0W_0 values but yield better total energies and energy differences.Comment: 11 pages, 3 figures, 3 table

    Anomalous Negative Magnetoresistance Caused by Non-Markovian Effects

    Full text link
    A theory of recently discovered anomalous low-field magnetoresistance is developed for the system of two-dimensional electrons scattered by hard disks of radius a,a, randomly distributed with concentration n.n. For small magnetic fields the magentoresistance is found to be parabolic and inversely proportional to the gas parameter, δρxx/ρ(ωcτ)2/na2. \delta \rho_{xx}/\rho \sim - (\omega_c \tau)^2 / n a^2. With increasing field the magnetoresistance becomes linear δρxx/ρωcτ\delta \rho_{xx}/\rho \sim - \omega_c \tau in a good agreement with the experiment and numerical simulations.Comment: 4 pages RevTeX, 5 figure

    Bonding and elementary steps in catalysis

    Get PDF
    corecore