1,844 research outputs found

    Automatic alignment for three-dimensional tomographic reconstruction

    Get PDF
    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset

    Transcriptomic plasticity in the arthropod generalist Tetranychus urticae upon long-term acclimation to different host plants

    Get PDF
    The two-spotted spider mite Tetranychus urticae is an important pest with an exceptionally broad host plant range. This generalist rapidly acclimatizes and adapts to a new host, hereby overcoming nutritional challenges and a novel pallet of constitutive and induced plant defenses. Although recent studies reveal that a broad transcriptomic response upon host plant transfer is associated with a generalist life style in arthropod herbivores, it remains uncertain to what extent these transcriptional changes are general stress responses or host-specific. In the present study, we analyzed and compared the transcriptomic changes that occur in a single T. urticae population upon long-term transfer from Phaseolus vulgaris to a similar, but chemically defended, host (cyanogenic Phaseolus lunatus) and to multiple economically important crops (Glycine max, Gossypium hirsutum, Solanum lycopersicum and Zea mays). These long-term host plant transfers were associated with distinct transcriptomic responses with only a limited overlap in both specificity and directionality, suggestive of a fine-tuned transcriptional plasticity. Nonetheless, analysis at the gene family level uncovered overlapping functional processes, recruiting genes from both well-known and newly discovered detoxification families. Of note, our analyses highlighted a possible detoxification role for Tetranychus-specific short-chain dehydrogenases and single PLAT domain proteins, and manual genome annotation showed that both families are expanded in T. urticae. Our results shed new light on the molecular mechanisms underlying the remarkable adaptive potential for host plant use of generalist arthropods and set the stage for functional validation of important players in T. urticae detoxification of plant secondary metabolites

    Trait mapping in diverse arthropods by bulked segregant analysis

    Get PDF
    Bulked segregant analysis (BSA) is a cross-based method for genetic mapping in sexually reproducing organisms. The method's use of bulked (pooled) samples markedly reduces the genotyping effort associated with traditional linkage mapping studies. Further, it can be applied to species with life histories or physical attributes (as for micro-insects) that render genetic mapping with other methods impractical. Recent studies in both insects and mites have revealed that advanced BSA experimental designs can resolve causal loci to narrow genomic intervals, facilitating follow-up investigations. As high-quality genomes become more widely available, BSA methods are poised to become an increasingly important tool for the rapid mapping of both monogenic and polygenic traits in diverse arthropod species

    Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae

    Get PDF
    Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the addition of UDP-sugars to small hydrophobic molecules, turning them into more water-soluble metabolites. While their role in detoxification is well documented for vertebrates, arthropod UGTs have only recently been linked to the detoxification and sequestration of plant toxins and insecticides. The two-spotted spider mite Tetranychus urticae is a generalist herbivore notorious for rapidly developing resistance to insecticides and acaricides. We identified a set of eight UGT genes that were overexpressed in mites upon long-term acclimation or adaptation to a new host plant and/or in mite strains highly resistant to acaricides. Functional expression revealed that they were all catalytically active and that the majority preferred UDP-glucose as activated donor for glycosylation of model substrates. A high-throughput substrate screening of both plant secondary metabolites and pesticides revealed patterns of both substrate specificity and promiscuity. We further selected nine enzyme-substrate combinations for more comprehensive analysis and determined steady-state kinetic parameters. Among others, plant metabolites such as capsaicin and several flavonoids were shown to be glycosylated. The acaricide abamectin was also glycosylated by two UGTs and one of these was also overexpressed in an abamectin resistant strain. Our study corroborates the potential role of T. urticae UGTs in detoxification of both synthetic and natural xenobiotic compounds and paves the way for rapid substrate screening of arthropod UGTs

    High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides

    Get PDF
    Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific

    Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae

    Get PDF
    BACKGROUND Milbemectin and abamectin are frequently used to control the spider mite Tetranychus urticae. The development of abamectin resistance in this major pest has become an increasing problem worldwide, potentially compromising the use of milbemectin. In this study, a large collection of European field populations was screened for milbemectin and abamectin resistance, and both target-site and metabolic (cross-)resistance mechanisms were investigated. RESULTS High to very high levels of abamectin resistance were found in one third of all populations, while milbemectin resistance levels were low for most populations. The occurrence of well-known target-site resistance mutations in glutamate-gated chloride channels (G314D in GluCl1 and G326E in GluCl3) was documented in the most resistant populations. However, a new mutation, I321T in GluCl3, was also uncovered in three resistant populations, while a V327G and L329F mutation was found in GluCl3 of one resistant population. A differential gene-expression analysis revealed the overexpression of detoxification genes, more specifically cytochrome P450 monooxygenase (P450) and UDP-glycosyltransferase (UGT) genes. Multiple UGTs were functionally expressed, and their capability to glycosylate abamectin and milbemectin, was tested and confirmed. CONCLUSIONS We found a clear correlation between abamectin and milbemectin resistance in European T. urticae populations, but as milbemectin resistance levels were low, the observed cross-resistance is probably not of operational importance. The presence of target-site resistance mutations in GluCl genes was confirmed in most but not all resistant populations. Gene-expression analysis and functional characterization of P450s and UGTs suggests that also metabolic abamectin resistance mechanisms are common in European T. urticae populations

    The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest

    Get PDF
    Synergists can counteract metabolic insecticide resistance by inhibiting detoxification enzymes or transporters. They are used in commercial formulations of insecticides, but are also frequently used in the elucidation of resistance mechanisms. However, the effect of synergists on genome-wide transcription in arthropods is poorly understood. In this study we used Illumina RNA-sequencing to investigate genome-wide transcriptional responses in an acaricide resistant strain of the spider mite Tetranychus urticae upon exposure to synergists such as S, S, S-tributyl phosphorotrithioate (DEF), diethyl maleate (DEM), piperonyl butoxide (PBO) and cyclosporin A (CsA). Exposure to PBO and DEF resulted in a broad transcriptional response and about one third of the differentially expressed genes (DEGs), including cytochrome P450 monooxygenases and UDP-glycosyltransferases, was shared between both treatments, suggesting common transcriptional regulation. Moreover, both DEF and PBO induced genes that are strongly implicated in acaricide resistance in the respective strain. In contrast, CsA treatment mainly resulted in downregulation of Major Facilitator Superfamily (MFS) genes, while DEGs of the DEM treatment were not significantly enriched for any GO-terms

    Charged Scalar Field in an external magnetic Field: Renormalisation and Universal Diamagnetism

    Full text link
    The physical and mathematical mechanism behind diamagnetism of N (finite) spinless bosons (relativistic or non-relativistic) is well known. The mathematical signature of this diamagnetism follows from Kato's inequality while its physical way of understanding goes back to Van Leewen. One can guess that it might be true in the field theoretic case also. While the work on systems with a finite number of degrees of freedom suggests that the same result is true in a field theory, it does not by any means prove it. In the field theoretic context one has to develop a suitable regularisation scheme to renormalise the free energy. We show that charged scalar fields in (2+1) and (3+1) dimensions are always diamagnetic, even in the presence of interactions and at finite temperatures. This generalises earlier work on the diamagnetism of charged spinless bosons to the case of infinite degrees of freedom. We also discuss possible applications of the theory.Comment: uuencoded file, 14 pages, longer version of cond-mat/9502103, to appear in Nuclear Physics B, vol.473 (1996), 1 postcript figure include

    The fast transient sky with Gaia

    Get PDF
    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 CCDs in 45 s and a lightcurve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known on-board and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ~2 hours timescales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on timescales ranging from 15 seconds to several hours. We search an area of ~23.5 square degrees on the sky, and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar type star. These classifications are based on archival data and the timescales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.Comment: 10 pages, 5 figures and 5 tables; MNRAS in pres
    corecore