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Highlights 

· Bulked segregant analysis (BSA) is a cross-based method for rapid trait mapping 

· BSA does not require genotyping of individuals from large mapping populations 

· BSA methods allow genetic mapping in non-model species with few genetic resources 

· Advances in genome sequencing are facilitating adoption of BSA methods more broadly 
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Abstract 

Bulked segregant analysis (BSA) is a cross-based method for genetic mapping in sexually reproducing 

organisms. The method’s use of bulked (pooled) samples markedly reduces the genotyping effort 

associated with traditional linkage mapping studies. Further, it can be applied to species with life 

histories or physical attributes (as for micro-insects) that render genetic mapping with other methods 

impractical. Recent studies in both insects and mites have revealed that advanced BSA experimental 

designs can resolve causal loci to narrow genomic intervals, facilitating follow-up investigations. As 

high-quality genomes become more widely available, BSA methods are poised to become an 

increasingly important tool for the rapid mapping of both monogenic and polygenic traits in diverse 

arthropod species. 

 

Introduction 

Insect and mite taxa are species-rich, and exhibit staggeringly diverse life histories and habitat 

preferences. They are also of high importance for human welfare as vectors of major human diseases, 

or as herbivores that cause ~US$470 billion in crop yield loss worldwide [1]. Chemical control with 

insecticides and acaricides has been crucial to keep pest populations low, and has fueled the evolution 

of resistance [2]. Nevertheless, elucidating the genetic architecture of resistance, as well as the immense 

variation in other phenotypes, has been challenging. For instance, it was only in 2002 that a variant at a 

cytochrome P450 (CYP) gene was implicated in Drosophila melanogaster as conferring resistance to 

the infamous pesticide dichlorodiphenyltrichloroethane (DDT) [3], which had been in use since the early 

1940s. This and more recent accomplishments using advanced genetic designs, including genome-wide 

association mapping (GWAS), have been made possible in this species by the extensive genetic and 

genomic resources developed over decades by the Drosophila community [4,5]. Apart from D. 

melanogaster or its congeners, however, such genetic resources are virtually non-existent in arthropods, 

and uncovering the molecular-genetic underpinnings of phenotypic variation can be daunting, even for 

monogenic traits. While traditional linkage mapping studies have identified loci for trait variation in a 

number of insect species (e.g., [6–8]), they require intensive genotyping of single individuals in 

segregating populations. Notwithstanding technical advances, genotyping hundreds of individuals 

remains time-consuming, tedious, and costly. In practice, this limits sample size, and hence power (the 

ability to detect a genotype-to-phenotype association) and mapping resolution (the size of a genomic 

region to which a causal variant is localized). Moreover, phenotyping single individuals may not always 

be readily feasible [9]. For instance, the minute size of many arthropods, including micro-insects or mite 

herbivores or parasites that can be only a few hundred mm in length [10,11], can make phenotyping 

individuals, as well as genotyping them, challenging or not possible in practice. To circumvent these 

obstacles, a growing number of studies have employed bulked segregant analysis (BSA) genetic 
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methods. In this review, we present a primer on BSA methods, highlight recent successes in both insects 

and mites, and discuss how barriers to more widespread adoption are being rapidly overcome. 

 

BSA genetic mapping: experimental design and detection of causal loci 

BSA concepts were first elaborated by plant geneticists in 1991 [12,13], with Michelmore et al. [13] 

introducing the term “BSA.” Since then, BSA approaches (Figure 1) have been used in many studies in 

plants to identify loci underlying both monogenic and quantitative traits [14–16]. As the methods are 

generally applicable to sexually reproducing organisms, they have also been adopted (in various forms) 

in studies in the yeast Saccharomyces cerevisiae [17–19], the roundworm Caenorhabditis elegans [20], 

vertebrates [21,22], and major arthropod taxa [9,23–25]. In its simplest iteration, two parental strains 

with a contrasting phenotype are crossed to generate an F2 population (Figure 1A,B), and separate bulk 

DNA samples are prepared from pools of individuals that exhibit phenotypic extremes for the trait of 

interest. In the straightforward case of monogenic inheritance, one pool will be fixed at the causal locus 

and the region surrounding it (an effect of linkage), while at unlinked genomic locations, alleles from 

both parents will be represented (Figure 1E,F). For quantitative traits, fixation is not expected, but 

differences in allele frequencies between offspring pools can be used to locate quantitative trait loci 

(QTL) (Figure 2) [24,26–28]. Although crosses with parental strains that are inbred simplifies 

genotyping and downstream analyses, it is not always a requirement [29,30]. Despite the conceptual 

simplicity and wide-spread success of BSA studies, a caveat is that detection of epistatic relationships 

is confounded as information about the co-occurrence of variants in individuals is lost upon pooling 

[31]. 

 

As single DNA samples are prepared and genotyped from each of contrasting bulks, the laborious step 

of individually processing hundreds of samples is eliminated. Importantly, pooling of individuals can 

allow for relatively large bulk sizes, which can increase mapping resolution, as more recombination 

events are captured (Figure 1B). To increase mapping resolution further, segregating populations can 

also be propagated beyond the F2 generation [9], allowing additional recombination events to 

accumulate (Figure 1C). The classic BSA design can also be modified in other ways. For instance, 

selection can be applied over multiple generations (instead of focusing on a single time point; Figure 

1D) [27,28]; this design is attractive for instances where the genetic architecture is polygenic, and for 

which multiple rounds of selection may be required to reveal detectable changes in allele frequencies at 

loci of minor effect size (see the Figure 1 legend for additional experimental considerations). The 

multigenerational selection component of this approach bears similarity to evolve and resequence (E&R) 

experimental designs that have also attracted attention, especially from Drosophila geneticists [32–34]. 

However, E&R studies typically use large, genetically diverse founding populations, as does the related 

pool-GWAS method [5,35], and not crosses starting with defined strains selected to vary markedly in 

phenotypes of interest, as typify BSA study designs. Nevertheless, E&R and pool-GWAS have been 
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shown to be powerful where requisite population resources exist, and their advantages and disadvantages 

have been investigated or reviewed in several recent and comprehensive works [36–39]. 

 

Regardless of the design, the ultimate goal of BSA mapping is to identify loci responsible for variation 

in traits of interest. In accomplishing this goal, many genotyping methods have been employed, with 

high-throughput, short-read sequencing (e.g., Illumina sequencing [40]) emerging as a dominant 

approach. By sequencing genomic DNA from pools [9,24,25,27–30], or in some cases cDNA (RNA-

seq) [23], marker discovery and genotyping can be performed simultaneously at comparatively low cost 

where reference genomes are available (genetic variation is inferred from read alignments to a known 

genome sequence, Figure 1E). Exploiting this data type, Pool [41] developed a particularly elegant 

approach for QTL detection with BSA data, including the identification of linked causal loci, although 

the method was tailored for Drosophila species. More recently, Mansfeld and Grumet [42] released the 

QTLseqr package, which implements or elaborates several proposed methods to detect QTL in BSA 

data [43,44]. Further, Wybouw et al. [27] recently developed a permutation-based approach for QTL 

detection applicable to BSA designs, although this method requires moderate-to-high replication of 

segregating populations. An advantage of the latter two approaches is that only a single input file in the 

Variant Call Format (VCF) is required for QTL detection. Pipelines of well supported programs, as well 

as best practice guidelines for their use in generating VCF files, are now robustly established and lower 

the informatic barrier to entry for BSA studies (see [27,28] for example pipelines with the respective 

software and citations). 

 

Beyond theory and simulations: lessons from experimental studies in insects and mites 

Apart from the genetic architecture (monogenic versus polygenic) and species-specific characteristics 

that can impact the practical implementation of BSA experimental designs, factors that affect power and 

resolution include the sizes of bulks, generation number, and marker density (Figure 1) [16,31,41,45]. 

For these parameters, theory and lessons from simulated data suggest that more is usually better than 

less (e.g., to increase recombination [41]), and recent experimental work in arthropods reflects this. To 

date, most BSA studies in insects have focused on traits that are easy to score, like pigmentation, and 

have started with parental strains with large phenotypic differences (e.g., sensitive and highly pesticide-

resistant strains). Despite some notable exceptions, small- to modestly-sized F2 or backcross 

populations of several hundreds of individuals have often been used. Mirroring initial studies in plants, 

BSA studies in insects have often used sparse genetic data; examples of marker types used to date 

include simple sequence repeat (microsatellite) markers [46–48], amplified fragment length 

polymorphism markers [49–51], restriction fragment length polymorphism markers [52], restriction-site 

associated DNA markers [53], single feature polymorphisms ascertained from microarrays [54–57], 

random amplified DNA fingerprinting [58], a combination of random amplified polymorphic DNA and 

microsatellite markers [59], and in a few cases dense marker data obtained from resequencing (e.g., 
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[23,25]). The number of genetic markers used in these studies varied greatly, with sparsely (and 

unevenly) distributed markers likely contributing to low QTL mapping resolution in some cases. 

Nevertheless, in the beet armyworm Spodoptera exigua, BSA mapping that used RNA-seq data for 

genotyping, aided by knowledge of potential candidate genes and their characterization with RNAi, led 

to the identification of ATP-binding cassette (ABC) transporters as underlying insensitivity to Bacillus 

thuringiensis (Bt) toxin in a resistant strain [23]. In several other studies, genes in BSA peak regions 

have been proposed as candidates, such as doublesex in the control of sex-related mimicry in the 

butterfly Papilio polytes [53]. In many instances, however, only broad regions of chromosomes 

harboring many genes were associated with phenotypes. Notwithstanding the introduction of methods 

like genome editing to a growing number of insect species [60], along with other methodological 

advances that facilitate functional assessment (validation) of candidates [61], characterizing long lists 

of genes in broad QTL intervals remains a daunting task.  

 

A small set of studies have now illustrated how more advanced BSA designs, in concert with the 

effectively saturating genotypic data afforded by high-throughput sequencing, can resolve causal loci to 

much narrower chromosome regions. A number of these studies have been performed with the two-

spotted spider mite, Tetranychus urticae, an agricultural pest known for its rapid evolution of pesticide 

resistance and host plant use [27,62,63]. These mites are small, ~600 µm in length for females, with 

males substantially smaller. Although single T. urticae individuals can be genotyped at a moderate 

number of loci by PCR [29,64,65], marker-based genotyping at a genome-wide scale is challenging, 

hindering QTL identification by traditional linkage mapping approaches that have been successful in 

larger-bodied insects. However, T. urticae strains can be crossed, and segregating populations can be 

expanded to thousands of individuals on detached leaves or on whole plants [9,27–30]. In two studies 

that started with crosses of T. urticae strains sensitive or resistant to mite growth inhibitor compounds, 

narrow BSA peaks for recessive, monogenic resistance were resolved to a single tiny chromosome 

region [9,30]. Both studies used large segregating populations that were expanded over ~6 generations; 

in the larger and more powered of these studies, peaks of haplotype fixation were either within or less 

than 20 kb from chitin synthase 1 (CHS1) [30], which was subsequently demonstrated by a genome 

editing approach in D. melanogaster to encode the target-site for the growth inhibitor compounds used 

for selection [66]. With a conceptually similar design, Bryon et al. [29] also used BSA mapping, in 

concert with follow-up studies, to identify mutations in a horizontally transferred gene, phytoene 

desaturase, as causal for the absence of carotenoid-based pigmentation in albino T. urticae strains. A 

reanalysis of Bryon et al.’s data with the methods presented in the Figure 2 legend revealed that the 

BSA peak, as assessed with replicate populations used in that study, was ~95 kb from the causal gene.  

 

Similar designs have also elucidated the genetic basis of polygenic traits. For example, in D. 

melanogaster, Bastide et al. [24] used multigeneration, long-term segregant populations and sequencing 
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of bulks to identify 19 distinct QTL regions for high-altitude melanism in multiple crosses. The BSA 

peaks for QTL were localized to small genomic intervals that included candidate pigmentation genes, 

suggesting that many are real. For further corroboration, Bastide et al. [24] extended their analyses of 

genes at BSA peaks to populations of light and dark flies. In some cases, strongly differentiated genetic 

variants were identified in and nearby candidates, a signal that loci identified in BSA scans explain 

pigmentation differences in population samples. Two studies in 2019 in T. urticae have also highlighted 

the promise of continuous selection over many generations, followed by the isolation and sequencing of 

bulks (Figure 1D), to unravel the genetic architecture of complex modes of inheritance [27,28]. In each 

study, replicated segregant populations derived from pesticide-sensitive and -resistant strains were 

selected with discriminating pesticide doses for ~25-50 generations. In these cases, resistance 

phenotypes were known to be polygenic, and multiple resistance QTL were identified, as shown by 

reproducible shifts toward alleles contributed by resistant parents that were observed in selected as 

compared to unselected populations (Figure 2). Although new candidate loci identified in this work have 

yet to be investigated in follow-up studies, the identity of genes near BSA peaks suggests that the QTL 

are likely real. For instance, several BSA peaks fell within a mere tens of kb from genes encoding known 

target sites of the pesticides used for selection (Figure 3). Further, major QTL were also resolved to tiny 

chromosome regions harboring genes with suspected or known roles in xenobiotic detoxification, a 

major route to resistance [2]. These genes encode a potential xenobiotic receptor, copy variable CYPs, 

and also cytochrome P450 reductase, which is required for CYP activity, and that was identified as a 

candidate for resistance to multiple compounds in independent crosses [27,28].  

 

Concluding remarks 

For most arthropods, the genetic tools that have enabled model-organism geneticists to link genes and 

alleles to phenotypic variation are poorly developed, if not even entirely absent. For many species, 

however, strains with contrasting phenotypes – including for pesticide resistance, pigmentation or other 

visual features, or variation in life history traits – are available or can be readily isolated. Where strains 

can be crossed, BSA genetic mapping holds great promise for the identification of causal loci. 

Nevertheless, given the species richness of insects and their relatives, and high levels of intraspecific 

phenotypic and genotypic variation, the method has been relatively little used to date. We believe this 

is poised to change rapidly. The emergence of cost-effective, high-throughput short-read sequencing for 

simultaneous marker discovery and dense genotyping has recently revolutionized BSA studies. 

However, assembled genomes are nonetheless needed to fully exploit short-read sequence data (Figure 

1E,F), and currently limit broader adoption of the method (or for that matter, other genetic approaches 

as well) [27]. The extent of this limitation was starkly revealed in BSA studies with T. urticae, as 

assembly incompleteness hampered QTL detection. Even though the T. urticae draft genome had a 

scaffold N50 of 2.99 Mb [67], it was only after allele frequency data from BSA populations was used 

to order scaffolds into a chromosome-level assembly that comprehensive QTL detection was possible 
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[27]. While the T. urticae genome sequence was produced with the high-quality Sanger method, de novo 

assemblies with short-read data are typically far more fragmented. However, newer single-molecule, 

long-read sequencing technologies, like PacBio and Oxford Nanopore [68,69], are now poised to 

overcome the genome assembly challenge, as they enable assemblies with scaffold sizes in the many 

Mb range, and potentially ones of chromosome lengths. These disruptive technologies are already in use 

for technically challenging genome assembly projects in insects [70]. Given the success of recent BSA 

studies in insects and mites, coupled with the evolving potential to rapidly generate high-quality genome 

assemblies, BSA approaches should be considered as a prominent tool for the rapid elucidation of the 

genetic architecture of trait variation. This is especially true for species for which the biological 

resources or attributes that have facilitated traditional linkage-based genetic mapping approaches, or 

alternatively ones like E&R and pool-GWAS, are lacking. However, as recent work in D. melanogaster 

has shown [24], BSA approaches can be an important tool for model-organism geneticists as well.   
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Figure 1 (1.5 column width figure) 

 

Experimental designs for BSA genetic mapping. Illustrations depict spider mites, but the methods are 

generally applicable where crosses can be performed and derived, segregating populations can be 

expanded in controlled settings in the laboratory, greenhouses, or field settings (e.g., in cage enclosures). 

(A) Parental strains with contrasting genotypes (chromosomes are indicated as blue or red rectangles) 

and phenotypes (gray shading) are crossed to produce an F2 population (or backcross population, not 

shown) harboring recombinant chromosomes (B). To allow additional recombination events to accrue, 

populations can also be propagated for additional generations (C). In the traditional BSA design, bulks 

are collected at a defined endpoint (B or C; red lines with arrows indicate the step at which the phenotype 

of interest is selected). The bulks consist of individuals with contrasting extremes in the phenotype of 

interest, e.g., visual differences like pigmentation. Alternatively, fitness differences in response to a 

selective agent can be assessed, as for a pesticide treatment, in which case “unselected” and resistant 

“selected” bulks are prepared. The specific scenario illustrated is for a hypothetical case of monogenic 

pesticide resistance. A variant of the traditional BSA design involves selection across multiple 

generations (D). Either way, DNA is prepared from bulk samples for genotyping, including by high-

throughput, short-read sequencing as indicated (E). Read alignments to a reference genome sequence 

are used for discovery of markers and assessment of allele frequencies in sliding windows. In the case 

of monogenic recessive inheritance, a single fixation event at and nearby the causal variant in the 

selected bulk is observed (F; AF, allele frequency). To account for systematic deviations in allele 

frequencies in populations independent of the trait of interest (e.g., as can happen in the case of purging 

of deleterious alleles, selection for alleles favorable in a laboratory environment, or as a result of 

segregation distortion), a comparison of allele frequencies in replicates of selected relative to unselected 

populations is typically performed (see also Figure 2). 
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Figure 2 (one column width figure) 

 

Example allele frequencies of replicate T. urticae populations under selection by the pesticide 

spirodiclofen in a study that applied selection over many generations. Shown are the raw allele 

frequencies of three representative replicates of unselected populations (blue lines) and spirodiclofen-

selected populations (red lines) as assessed in sliding windows (500 kb with a 25 kb offset). The data 

used to construct the plots are from Wybouw et al. [27] (the experimental design was after Figure 

1A,B,D). As plotted, vertical deflections indicate increases in the frequency of alleles coming from the 

spirodiclofen-resistant parental strain. Systematic differences in allele frequencies between the paired 

unselected and selected populations (gray shading) indicate two QTL [27], and are indicated by vertical 

dashed lines. Note that several regions of fixation (or near fixation) are observed even in unselected 

populations (black arrows), potentially reflecting the purging of deleterious alleles (but see the Figure 1 
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legend for other possibilities). The code used to plot this figure was adapted from Wybouw et al. [27] 

and Snoeck et al. [28], and has been made available on Github (https://github.com/rmclarklab/BSA).  

 

 

 

Figure 3 (one column width figure) 

 

BSA mapping resolution for a pesticide resistance QTL. Data from nine or ten selected populations from 

Snoeck et al. [28] in T. urticae for each of three pesticides (fenpyroximate, pyridaben, and tebufenpyrad) 

was reanalyzed along with control populations (see Figure 2 legend for methods; 75 kb windows were 

used with 5 kb offsets; experimental design after Figure 1A,B,D). The three pesticides are Mitochondrial 

Electron Transport Inhibitors of complex I (METI-Is), for which the histidine-to-arginine change at 

position 92 (denoted H92R) in a gene encoding a subunit of NADH:ubiquinone oxidoreductase 

associates with target-site resistance [28]. For each pesticide, the BSA peaks calculated by combining 

all replicates into a single analysis (solid triangles) were within tens of kb of the causal variant; this was 

true for some replicates also (open triangles), but in a moderate number of cases, peaks were much 

farther from the causal variant (especially for selection by pyridaben, for which the populations may 

have undergone a bottleneck during the propagation steps [28]). Therefore, while BSA approaches can 

provide high mapping resolution, relying on a small number of replicates can potentially be misleading. 
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