14 research outputs found

    Gene duplication in bovine brain myelin proteolipid and homology with related proteins

    Get PDF
    AbstractAnalysis of the amino acid sequence of bovine brain myelin proteolipid reveals not only extensive internal homology, but also homology with portions of the myelin basic protein, the peripheral nerve myelin protein, Po, and with the small proteolipid subunit of mitochondrial ATP synthase. These results suggest that the myelin proteolipid gene has been constructed from a small number of genetic elements, and that these elements are also found in non-myelin proteins. Furthermore, the proteolipid appears to have evolved by acquisition of elements from a ‘gene pool’ over a period of time, rather than by a simple duplication mechanism

    Monoclonal Antibodies to Distinct Regions of Human Myelin Proteolipid Protein Simultaneously Recognize Central Nervous System Myelin and Neurons of Many Vertebrate Species

    Get PDF
    Myelin proteolipid protein (PLP), the major protein of mammalian CNS myelin, is a member of the proteolipid gene family (pgf). It is an evolutionarily conserved polytopic integral membrane protein and a potential autoantigen in multiple sclerosis (MS). To analyze antibody recognition of PLP epitopes in situ, monoclonal antibodies (mAbs) specific for different regions of human PLP (50–69, 100–123, 139–151, 178–191, 200–219, 264–276) were generated and used to immunostain CNS tissues of representative vertebrates. mAbs to each region recognized whole human PLP on Western blots; the anti-100–123 mAb did not recognize DM-20, the PLP isoform that lacks residues 116–150. All of the mAbs stained fixed, permeabilized oligodendrocytes and mammalian and avian CNS tissue myelin. Most of the mAbs also stained amphibian, teleost, and elasmobranch CNS myelin despite greater diversity of their pgf myelin protein sequences. Myelin staining was observed when there was at least 40% identity of the mAb epitope and known pgf myelin proteins of the same or related species. The pgf myelin proteins of teleosts and elasmobranchs lack 116–150; the anti-100–123 mAb did not stain their myelin. In addition to myelin, the anti-178– 191 mAb stained many neurons in all species; other mAbs stained distinct neuron subpopulations in different species. Neuronal staining was observed when there was at least approximately 30% identity of the PLP mAb epitope and known pgf neuronal proteins of the same or related species. Thus, anti-human PLP epitope mAbs simultaneously recognize CNS myelin and neurons even without extensive sequence identity. Widespread anti-PLP mAb recognition of neurons suggests a novel potential pathophysiologic mechanism in MS patients, i.e., that anti-PLP antibodies associated with demyelination might simultaneously recognize pgf epitopes in neurons, thereby affecting their functions

    Myelin proteolipid protein - the first 50 years

    No full text
    Myelin proteolipid protein (PLP), the most abundant protein of central nervous system (CNS) myelin, is a hydrophobic integral membrane protein. Because of its physical properties, which make it difficult to work with, progress towards determining the exact function(s) and disease associations of myelin PLP has been slow. However, recent molecular biology advances have given new life to investigations of PLP, and suggest that it has multiple functions within myelin and is of importance in several neurological disorders. (C) 2002 Elsevier Science Ltd. All rights reserved

    Orientation of myelin proteolipid protein in the oligodendrocyte cell membrane

    No full text
    The orientation of proteins within a cell membrane can often be difficult to determine. A number of models have been proposed for the orientation of the myelin protein, proteolipid protein (PLP), each of which includes exposed domains on the intracellular and extracellular membrane faces. Immunolabeling experiments have localized the C-terminus and the region spanning amino acids 103-116 to the cytoplasmic face of the membrane, but no well characterized antibodies have been available that label extracellular PLP domains. In this report, we describe the generation and characterization of mouse monoclonal antibodies (mAb) against putative extramembrane domains. Three of the mAb, specific for PLP peptides 40-59, 178-191, or: 215-232, immunostain!ive oligodendrocytes, indicating that these regions of the molecule are exposed on the external surface of the cell. In addition, we have used these mAb to study the time-course of incorporation of PLP into the oligodendrocyte membrane. These studies increase our knowledge of the orientation of PLP in the lipid bilayer and are relevant for understanding myelin function

    An Altered Peptide Ligand Mediates Immune Deviation and Prevents Autoimmune Encephalomyelitis

    Get PDF
    In experimental autoimmune encephalomyelitis (EAE) induced with myelin proteolipid protein (PLP) peptide 139-151, we have previously shown that the disease is mediated by Th1 cells, which recognize tryptophan 144 as the primary TCR contact point. Here we describe an altered peptide ligand (APL), generated by a single amino acid substitution (tryptophan to glutamine) at position 144 (Q144), which inhibits the development of EAE induced with the native PLP 139-151 peptide (W144). We show that the APL induces T cells that are cross-reactive with the native peptide and that these cells produce Th2 (IL-4 and IL-10) and Th0 (IFN gamma and IL-10) cytokines. Adoptive transfer of T cell lines generated with the APL confer protection from EAE. These data show that changing a single amino acid in an antigenic peptide can significantly influence T cell differentiation and suggest that immune deviation may be one of the mechanisms by which APLs can inhibit an autoimmune disease
    corecore