531 research outputs found

    Molecular modeling of intermolecular and intramolecular excluded volume interactions for polymers at interfaces

    Get PDF
    A hybrid modeling approach is proposed for inhomogeneous polymer solutions. The method is illustrated for the depletion problem with polymer chains up to N=103 segments in semidilute solutions and good solvent conditions. In a three-dimensional volume, a set of freely jointed chains is considered for which the translational degrees of freedom are sampled using a coarse grained Monte Carlo simulation and the conformational degrees of freedom of the chains are computed using a modified self-consistent field theory. As a result, both intramolecular and intermolecular excluded volume effects are accounted for, not only for chains near the surface, but in the bulk as well. Results are consistent with computer simulations and scaling considerations. More specifically, the depletion thickness, which is a measure for the bulk correlation length, scales as d~J-0.75 and converges to the mean field result in the concentrated regim

    Sign switch of Gaussian bending modulus for microemulsions; a self-consistent field analysis exploring scale invariant curvature energies

    Get PDF
    Bending rigidities of tensionless balanced liquid-liquid interfaces as occurring in microemulsions are predicted using self-consistent field theory for molecularly inhomogeneous systems. Considering geometries with scale invariant curvature energies gives unambiguous bending rigidities for systems with fixed chemical potentials: The minimal surface Im3m cubic phase is used to find the Gaussian bending rigidity, κˉ\bar{\kappa}, and a torus with Willmore energy W=2π2W=2 \pi^2 allows for direct evaluation of the mean bending modulus, κ\kappa. Consistent with this, the spherical droplet gives access to 2κ+κˉ2 \kappa + \bar{\kappa}. We observe that κˉ\bar{\kappa} tends to be negative for strong segregation and positive for weak segregation; a finding which is instrumental for understanding phase transitions from a lamellar to a sponge-like microemulsion. Invariably, κ\kappa remains positive and increases with increasing strength of segregation.Comment: 7 pages, 5 figure

    Band inversion driven by electronic correlations at the (111) LaAlO3_3/SrTiO3_3 interface

    Get PDF
    Quantum confinement at complex oxide interfaces establishes an intricate hierarchy of the strongly correlated dd-orbitals which is widely recognized as a source of emergent physics. The most prominent example is the (001) LaAlO3_3/SrTiO3_3(LAO/STO) interface, which features a dome-shaped phase diagram of superconducting critical temperature and spin-orbit coupling (SOC) as a function of electrostatic doping, arising from a selective occupancy of t2gt_{2g} orbitals of different character. Here we study (111)-oriented LAO/STO interfaces - where the three t2gt_{2g} orbitals contribute equally to the sub-band states caused by confinement - and investigate the impact of this unique feature on electronic transport. We show that transport occurs through two sets of electron-like sub-bands, and the carrier density of one of the sets shows a non-monotonic dependence on the sample conductance. Using tight-binding modeling, we demonstrate that this behavior stems from a band inversion driven by on-site Coulomb interactions. The balanced contribution of all t2gt_{2g} orbitals to electronic transport is shown to result in strong SOC with reduced electrostatic modulation.Comment: 5 pages, 4 figures, (+ supplemental material

    Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelles

    Full text link
    We have used the Scheutjens-Fleer self-consistent field (SF-SCF) method to predict the self-assembly of triblock copolymers with a solvophilic middle block and sufficiently long solvophobic outer blocks. We model copolymers consisting of polyethylene oxide (PEO) as solvophilic block and poly(lactic-co-glycolic) acid (PLGA) or poly({\ko}-caprolactone) (PCL) as solvophobic block. These copolymers form structurally quenched spherical micelles provided the solvophilic block is long enough. Predictions are calibrated on experimental data for micelles composed of PCL-PEO-PCL and PLGA-PEO-PLGA triblock copolymers prepared via the nanoprecipitation method. We establish effective interaction parameters that enable us to predict various micelle properties such as the hydrodynamic size, the aggregation number and the loading capacity of the micelles for hydrophobic species that are consistent with experimental finding.Comment: accepted for publication in Soft Matte

    Two Dimensional Ising Superconductivity in Gated MoS2_{2}

    Get PDF
    The Zeeman effect, which is usually considered to be detrimental to superconductivity, can surprisingly protect the superconducting states created by gating a layered transition metal dichalcogenide. This effective Zeeman field, which is originated from intrinsic spin orbit coupling induced by breaking in-plane inversion symmetry, can reach nearly a hundred Tesla in magnitude. It strongly pins the spin orientation of the electrons to the out-of-plane directions and protects the superconductivity from being destroyed by an in-plane external magnetic field. In magnetotransport experiments of ionic-gate MoS2_{2} transistors, where gating prepares individual superconducting state with different carrier doping, we indeed observe a spin- protected superconductivity by measuring an in-plane critical field B\textit{B}c2_{c2} far beyond the Pauli paramagnetic limit. The gating-enhanced B\textit{B}c2_{c2} is more than an order of magnitude larger compared to the bulk superconducting phases where the effective Zeeman field is weakened by interlayer coupling. Our study gives the first experimental evidence of an Ising superconductor, in which spins of the pairing electrons are strongly pinned by an effective Zeeman field

    Determination of atmospheric mercury during the North Sea experiment

    Get PDF
    Total gaseous mercury (TGM) and rainwater were collected on board of two research vessels (F. S. ALKOR and R.V. BELGICA) positioned 200 km apart in the center of the North Sea during the North Sea Experiment, September 1991. On the F. S. ALKOR (up-wind ship) TGM concentrations ranged from 0.7 to 2.6 ng.m(-3) with an average of 1.5 ng.m(-3) and on the R. V. BELGICA (down-wind ship) TGM ranged from 0.7 to 1.9 ng.m(-3) with an average of 1.2 ng.m(-3). An average 20% decrease is observed from the up-wind to the downwind ship. which may largely be affected by entrainment into the free troposphere. An overall removal (entrainment) velocity of 0.95 cm.s(-1) was calculated for the whole experiment. The average removal velocity was 0.5 cm.s(-1) for dry periods and varied between 1 to 5 cm.s(-1) during rain events. Rainwater concentrations varied between 5 and 25 ng.l(-1). Based on these data an annual wet deposition flux of 1.08 ng Hg cm(-2) yr(1-) was estimated for the North Sea
    • …
    corecore