29 research outputs found

    Field-induced magnetic incommensurability in multiferroic Ni3TeO6

    Get PDF
    Using single-crystal neutron diffraction we show that the magnetic structure Ni3TeO6 at fields above 8.6 T along the c axis and low temperature changes from a commensurate collinear antiferromagnetic structure with spins along c and ordering vector QC=(001.5) to a conical spiral with propagation vector QIC=(001.5¹δ), δ∟0.18, having a significant spin component in the (a,b) plane. We determine the phase diagram of this material in magnetic fields up to 10.5 T along c and show the phase transition between the low field and conical spiral phases is of first order by observing a discontinuous jump of the ordering vector. QIC is found to drift both as a function of magnetic field and temperature. Preliminary inelastic neutron-scattering data reveal that the spin-wave gap in zero field has minima exactly at QIC and a gap of about 1.1 meV consisting with a crossover around 8.6 T. Further, a simple magnetic Hamiltonian accounting in broad terms for these is presented. Our findings confirm the exclusion of the inverse Dzyaloshinskii-Moriya interaction as a cause for the giant magnetoelectric due to symmetry arguments. In its place we advocate for the symmetric exchange striction as the origin of this effect

    Tension-sensitive actin assembly supports contractility at the epitherlial zonula adherens

    Get PDF
    Background: Actomyosin-based contractility acts on cadherin junctions to support tissue integrity and morphogenesis. The actomyosin apparatus of the epithelial zonula adherens (ZA) is built by coordinating junctional actin assembly with Myosin II activation. However, the physical interaction between Myosin and actin filaments that is necessary for contractility can induce actin filament turnover, potentially compromising the contractile apparatus itself

    Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion

    No full text
    Published online 28.07.2014The microRNAs of the miR‐200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago‐HITS‐CLIP technology for transcriptome‐wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR‐200a and miR‐200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR‐200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR‐200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho‐ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR‐200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.Cameron P Bracken, Xiaochun Li, Josephine A Wright, David M Lawrence, Katherine A Pillman, Marika Salmanidis, Matthew A Anderson, B Kate Dredge, Philip A Gregory, Anna Tsykin, Corine Neilsen, Daniel W Thomson, Andrew G Bert, Joanne M Leerberg, Alpha S Yap, Kirk B Jensen, Yeesim Khew‐Goodall, Gregory J Goodal

    Resolving the cadherin-F-actin connection

    No full text
    Cadherin adhesion complexes have recently emerged as sensors of tissue tension that regulate key developmental processes. Super-resolution microscopy experiments now unravel the spatial organization of the interface between cadherins and the actin cytoskeleton and reveal how vinculin, a central component in cadherin mechanotransduction, is regulated by mechanical and biochemical signals

    Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion

    No full text
    Lymphatic vessels constitute a specialized vasculature that is involved in development, cancer, obesity, and immune regulation. The migration of lymphatic endothelial cells (LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodeling, processes that modify the lymphatic network in response to developmental or pathological demands. Using the publicly accessible results of our genome-wide siRNA screen, we characterized the migratome of primary human LECs and identified individual genes and signaling pathways that regulate LEC migration. We compared our data set with mRNA differential expression data from endothelial and stromal cells derived from two in vivo models of lymphatic vessel remodeling, viral infection and contact hypersensitivity-induced inflammation, which identified genes selectively involved in regulating LEC migration and remodeling. We also characterized the top candidates in the LEC migratome in primary blood vascular endothelial cells to identify genes with functions common to lymphatic and blood vascular endothelium. On the basis of these analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance of the lymphatic endothelial phenotype. Our results provide insight into the signaling networks that control lymphangiogenesis and lymphatic remodeling and potentially identify therapeutic targets and biomarkers in disease specific to lymphatic or blood vessels

    Phosphatidylinositol 3'-kinase signalling supports cell height in established epithelial monolayers

    No full text
    Cell-cell interactions influence epithelial morphogenesis through an interplay between cell adhesion, trafficking and the cytoskeleton. These cellular processes are coordinated, often by cell signals found at cell-cell contacts. One such contact-based signal is the phosphatidylinositol 3'-kinase (PI3-kinase; PI3K) pathway. PI3-kinase is best understood for its role in mitogenic signalling, where it regulates cell survival, proliferation and differentiation. Its precise morphogenetic impacts in epithelia are, in contrast, less well-understood. Using phosphoinositide-specific biosensors we confirmed that E-cadherin-based cell-cell contacts are enriched in PIP(3), the principal product of PI3-kinase. We then used pharmacologic inhibitors to assess the morphogenetic impact of PI3-kinase in MDCK and MCF7 monolayers. We found that inhibiting PI3-kinase caused a reduction in epithelial cell height that was reversible upon removal of the drugs. This was not attributable to changes in E-cadherin expression or homophilic adhesion. Nor were there detectable changes in cell polarity. While Myosin II has been implicated in regulating keratinocyte height, we found no effect of PI3-kinase inhibition on apparent Myosin II activity; nor did direct inhibition of Myosin II alter epithelial height. Instead, in pursuing signalling pathways downstream of PI3-kinase we found that blocking Rac signalling, but not mTOR, reduced epithelial cell height, as did PI3-kinase inhibition. Overall, our findings suggest that PI3-kinase exerts a major morphogenetic impact in simple cultured epithelia through preservation of cell height. This is independent of potential effects on adhesion or polarity, but may occur through PI3-kinase-stimulated Rac signaling
    corecore