220 research outputs found

    Tripeptidase Gene (pepT) of Lactococcus lactis:Molecular Cloning and Nucleotide Sequencing of pepT and Construction of a Chromosomal Deletion Mutant

    Get PDF
    The gene encoding a tripeptidase (pepT) of lactococcus lactis subsp. cremoris (formerly subsp. lactis) MG1363 was cloned from a genomic library in pUC19 and subsequently sequenced. The tripeptidase of L. lactis was shown to be homologous to PepT of Salmonella typhimurium with 47.4% identity in the deduced amino acid sequences. L. lactis PepT was enzymatically active in Escherichia coli and allowed growth of a peptidase-negative leucine-auxotrophic E. coli strain by liberation of Leu from a tripeptide. Using a two-step integration excision system, a pepT-negative mutant of L. lactis was constructed. No differences between the growth of the mutant and that of the wild-type strain in milk or in chemically defined medium with casein as the sole source of essential amino acids were observed.</p

    Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice

    Get PDF
    Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of non-living, self-adjuvanted, Lactococcus lactis bacterium-like particles (BLP) displaying Shigella invasion plasmid antigen (Ipa) B and IpaD and examined its immunogenicity and protective efficacy in adult and newborn/infant mice immunized via the nasal route. Unique advantages of this approach include the potential for broad protection due to the highly conserved structure of the Ipas and the safety and practicality of a probiotic-based mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool IgA in a dose-dependent manner. Immune responses and protection were enhanced by BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased survival post-challenge. Ipa-specific antibody secreting cells were detected in nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow cells produced IpaB/D-specific antibodies and contributed to protection after adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80% protection against S. flexneri and S. sonnei, respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and IpaD serum antibodies; 90% were protected against S. flexneri and 44% against S. sonnei. The BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially effective immunization of children against shigellosis

    Bacterium-like particles as multi-epitope delivery platform for Plasmodium berghei circumsporozoite protein induce complete protection against malaria in mice

    Get PDF
    Contains fulltext : 110364.pdf (publisher's version ) (Open Access)BACKGROUND: Virus-like particles have been regularly used as an antigen delivery system for a number of Plasmodium peptides or proteins. The present study reports the immunogenicity and protective efficacy of bacterium-like particles (BLPs) generated from Lactococcus lactis and loaded with Plasmodium berghei circumsporozoite protein (PbCSP) peptides. METHODS: A panel of BLP-PbCSP formulations differing in composition and quantity of B-cell, CD4+ and CD8+ T-cell epitopes of PbCSP were tested in BALB/c mice. RESULTS: BLP-PbCSP1 induced specific humoral responses but no IFN-gamma ELISPOT response, protecting 30-40% of the immunized mice. BLP-PbCSP2, with reduced length of the non-immunogenic part of the T-cell-epitopes construct, increased induction of IFN-gamma responses as well as protection up to 60-70%. Compared to controls, lower parasitaemia was observed in unprotected mice immunized with BLP-PbCSP1 or 2, suggestive for partial immunity. Finally, further increase of the number of B-cell epitopes and codon optimization (BLP-PbCSP4) induced the highest anti-CSP antibody levels and number of IFN-gamma spots, resulting in sterile immunity in 100% of the immunized mice. CONCLUSION: Presentation of Plasmodium-derived antigens using BLPs as a delivery system induced complete protection in a murine malaria model. Eventually, BLPs have the potential to be used as a novel versatile delivery platform in malaria vaccine development

    Flushing of an intravenous catheter: a cause for unreliable laboratory results

    Get PDF
    Introduction: Phlebotomy is an error-prone process in which mistakes are difficult to reveal. This case report describes the effect on laboratory results originating from a blood sample collected in close proximity to an intravenous catheter. Materials and methods: A 69-year-old male patient was referred to the Emergency department where pneumonia was suspected. Phlebotomy was performed to collect blood samples to assess electrolytes, renal function, liver function, infection and haematological parameters. Results: The laboratory analysis showed reduced potassium and calcium concentrations. To prevent life-threatening cardiac failure the clinician decided to correct those electrolytes. Remarkably, the electrocardiogram showed no abnormalities corresponding to hypokalaemia and hypocalcaemia. This observation, in combination with an overall increase in laboratory parameters with the exception of sodium and chloride, led to the suspicion of a preanalytical error. Retrospectively, an intravenous catheter was inserted in close proximity of the puncture place but no continuous infusion was started prior to phlebotomy. However, the intravenous catheter was flushed with sodium chloride. Since potential other causes were excluded, the flushing of the intravenous catheter with sodium chloride prior to phlebotomy was the most probable cause for the deviating laboratory results and subsequently for the unnecessary potassium and calcium suppletion. Conclusion: This case underlines the importance of caution in the interpretation of laboratory results obtained from specimens that are collected in the proximity of an intravenous catheter, even in the absence of continuous infusion

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Biophysical Characterization of the Type III Secretion Tip Proteins and the Tip Proteins Attached to Bacterium-Like Particles

    Get PDF
    Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a peptidoglycan anchoring domain (PA). In this study, the tip proteins IpaD, SipD and LcrV belonging to type three secretion systems of Shigella flexneri, Salmonella enterica and Yersinia enterocolitica, respectively, were fused to the PA and loaded onto the BLPs. Herein, we biophysically characterized these nine samples and condensed the spectroscopic results into three-index empirical phase diagrams (EPDs). The EPDs show distinctions between the IpaD/SipD and LcrV subfamilies of tip proteins, based on their physical stability, even upon addition of the PA. Upon attachment to the BLPs, the BLPs become defining moiety in the spectroscopic measurements, leaving the tip proteins to have a subtle yet modulating effect on the structural integrity of the tip proteins-BLPs binding. In summary, this work provides a comprehensive view of physical stability of the tip proteins and tip protein-BLPs and serves as a baseline for screening of excipients to increase the stability of the tip protein-BLPs for future vaccine formulation

    Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635

    Get PDF
    The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203

    The Dutch nationwide trauma registry:The value of capturing all acute trauma admissions

    Get PDF
    Introduction: Twenty years ago the Dutch trauma care system was reformed by the designating 11 level one Regional trauma centres (RTCs) to organise trauma care. The RTCs set up the Dutch National Trauma Registry (DNTR) to evaluate epidemiology, patient distribution, resource use and quality of care. In this study we describe the DNTR, the incidence and main characteristics of Dutch acutely admitted trauma patients, and evaluate the value of including all acute trauma admissions compared to more stringent criteria applied by the national trauma registries of the United Kingdom and Germany. Methods: The DNTR includes all injured patients treated at the ED within 48 hours after trauma and consecutively followed by direct admission, transfers to another hospital or death at the ED. DNTR data on admission years 2007-2018 were extracted to describe the maturation of the registry. Data from 2018 was used to describe the incidence rate and patient characteristics. Inclusion criteria of the Trauma Audit and Research (TARN) and the Deutsche Gesellschaft für Unfallchirurgie (DGU) were applied on 2018 DNTR data. Results: Since its start in 2007 a total of 865,460 trauma cases have been registered in the DNTR. Hospital participation increased from 64% to 98%. In 2018, a total of 77,529 patients were included, the median age was 64 years, 50% males. Severely injured patients with an ISS≥16, accounted for 6% of all admissions, of which 70% was treated at designated RTCs. Patients with an ISS≤ 15were treated at non-RTCs in 80% of cases. Application of DGU or TARN inclusion criteria, resulted in inclusion of respectively 5% and 32% of the DNTR patients. Particularly children, elderly and patients admitted at non-RTCs are left out. Moreover, 50% of ISS≥16 and 68% of the fatal cases did not meet DGU inclusion criteria Conclusion: The DNTR has evolved into a comprehensive well-structured nationwide population-based trauma register. With 80,000 inclusions annually, the DNTR has become one of the largest trauma databases in Europe The registries strength lies in the broad inclusion criteria which enables studies on the burden of injury and the quality and efficiency of the entire trauma care system, encompassing all trauma‐receiving hospitals
    corecore