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Abstract

Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery 

vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a 

peptidoglycan anchoring domain (PA). In this study, the tip proteins IpaD, SipD and LcrV 

belonging to type three secretion systems of Shigella flexneri, Salmonella enterica and Yersinia 

enterocolitica, respectively, were fused to the PA and loaded onto the BLPs. Herein, we 

biophysically characterized these nine samples and condensed the spectroscopic results into three-

index empirical phase diagrams (EPDs). The EPDs show distinctions between the IpaD/SipD and 

LcrV subfamilies of tip proteins, based on their physical stability, even upon addition of the PA. 

Upon attachment to the BLPs, the BLPs become defining moiety in the spectroscopic 

measurements, leaving the tip proteins to have a subtle yet modulating effect on the structural 

integrity of the tip proteins-BLPs binding. In summary, this work provides a comprehensive view 

of physical stability of the tip proteins and tip protein-BLPs and serves as a baseline for screening 

of excipients to increase the stability of the tip protein-BLPs for future vaccine formulation.

Introduction

Subunit antigens in vaccines require a suitable adjuvant and delivery vehicle to increase 

vaccine efficacy. Soluble antigens are generally poorly immunogenic, especially when 

delivered via mucosal routes. We developed a mucosal vaccine technology that is based on 

non-living particles derived from the food-grade gram-positive bacterium Lactococcus 

lactis.1 This bacterium is widely used in the food industry and has the Generally Recognized 

As Safe (GRAS) status of the FDA. The particles derived from L. lactis are referred to as 

Bacterium-like Particles (BLPs). Previously they were designated GEMs (Gram-positive 

Enhancer Matrix). BLPs have the same size and shape as living lactococci (approximately 1 
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µm diameter) and because of a chemical pretreatment with acid, the particles lack intact 

proteins, DNA, RNA, and lipids.2 The main component of the bacterial cell wall, 

peptidoglycan, is essentially unaffected and this polymer network preserves BLPs structural 

integrity. BLPs have an immunostimulating activity and activate the innate immune system 

through TLR2-mediated signaling.3,4 The immunostimulating activity of BLPs has also been 

demonstrated in a proof-of-concept Phase I human clinical trial with an intranasal BLP 

adjuvanted influenza vaccine.5 In addition, BLPs can act as a carrier by loading subunit 

antigens in trans onto the particle surface. For this purpose, antigens are produced as fusions 

with a peptidoglycan anchoring (PA) domain in a recombinant expression system. After 

purification, antigens are loaded onto the surface of BLPs by means of the PA domain which 

binds non-covalently with high affinity to the peptidoglycan surface of BLPs.6 This vaccine 

format circumvents the use of recombinant DNA in the carrier, while it preserves the 

immunostimulating properties of bacterial particles. The efficacy of carrier-based BLP 

vaccines has been demonstrated in various animal models with vaccines that contain 

parasitic, viral, or bacterial antigens.3,7–9

Many gram-negative bacterial pathogens possess a type III secretion system (T3SS) that 

translocates effector proteins into a host eukaryotic cell to manipulate normal host cell 

functions. The type III secretion apparatus (T3SA) is comprised of a basal body that spans 

the inner and outer membrane of the pathogen and a needle that protrudes beyond the 

lipopolysacchride layer. At the T3SA needle tip is a protein complex that is involved in the 

control of protein secretion.10,11 In Shigella flexneri the tip complex is a pentamer of 

invasion plasmid antigen D (IpaD).12 IpaD’s closest relative is Salmonella invasion protein 

D (SipD) which is the T3SA needle tip complex protein for Salmonella enterica.13 For the 

more distantly related T3SA of Yersinia enterocolitica the needle tip complex is comprised 

of a pentamer of the low-calcium response protein LcrV.14 Because of the essential role that 

these tip complex proteins play in the virulence of their respective pathogens, they represent 

attractive targets for the development of broadly protective enteric vaccines. Indeed, all 

three have been demonstrated to be protective antigens alone or in combination with other 

T3SS proteins15–18 (Harrison et al., in preparation). We have previously described the 

biophysical properties of these three proteins for the purpose of vaccine development, 19–21 

however, those data are now updated using more highly purified preparations and improved 

methods for generating empirical phase diagrams. We have also extended those studies by 

analyzing the proteins fused with a protein anchor before and after attachment to the surface 

of BLPs.

The stability of a protein based vaccine is often a major concern associated with formulation 

development, transport and storage. Thermal and pH alterations are among the primary 

variables that often compromise stability of the antigenic protein components in a 

formulation. Thus it becomes a necessity to biophysically characterize and determine the 

stability of these proteins under different stress conditions of pH and temperature. In this 

study, the tip proteins were biophysically characterized using circular dichroism (CD) and 

intrinsic fluorescence spectroscopies as well as static light scattering to assess the structural 

integrity with regard to secondary structure, tertiary structure and aggregation state of the 

protein. The acquired data were incorporated into a color map (three-index empirical phase 
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diagram or EPD) that indicated different physical states of the protein using an RGB color 

scheme. The EPDs provide a comprehensive view of the structural integrity of the proteins 

and protein-BLPs under pH and temperature stress conditions. The major goal of this work 

is to examine aspects of the structure which may be helpful for potential formulation 

development of type III secretion system tip protein-BLPs vaccines. Note that we use here 

the term “stability” to represent changes in structure or aggregation state, not in a 

thermodynamic sense due to sure lack or reversibility.

Materials and Methods

Expression and purification of the tip proteins

Expression and purification of the histidine tagged tip proteins IpaD, SipD and LcrV using 

standard immobilized metal affinity chromatography (IMAC) has been described 

previously.19,20 Further purification of the tip proteins was achieved using anion exchange 

chromatography as described.16 The purified proteins were dialyzed into phosphate buffered 

saline (PBS) and stored at −80 °C.

Expression and purification of the tip proteins-PA

Cloning, expression and purification of LcrV-PA has been described before.3 IpaD-PA 

protein was prepared as follows: ipaD from S. flexneri was codon-optimized for L. lactis, 

synthesised and sub-cloned into a L. lactis expression vector pPA224 such that the resulting 

recombinant gene contains a C-terminal PA and the expressed hybrid protein is secreted into 

the medium. The resulting plasmid pMUC052 was electroporated into L. lactis PA1001 for 

expression and secretion of the fusion protein, as previously described.2 The IpaD-PA 

protein was purified from the clarified culture media using cation exchange chromatography 

followed by dialysis against PBS.

SipD-PA protein was prepared as follows: sipD from S. enterica was codon-optimized for L. 

lactis, synthesised and sub-cloned into a L. lactis expression vector pMUC059 such that the 

resulting recombinant protein contains a C-terminal PA, which is secreted into the medium. 

The resulting plasmid pMUC108 was electroporated into L. lactis PA1001 for expression 

and secretion of the fusion protein, as previously described.2 The SipD-PA protein was 

purified from the clarified culture media by cation exchange chromatography.

The purified proteins were filter sterilized (0.45 µm) and stored at +4 °C at a concentration 

of 10 mg/mL before binding to BLPs.

Production of Bacterium-Like Particles (BLPs) and binding the tip proteins-PA to BLPs

Production of BLPs and binding of protein-PA fusions to BLPs has been described 

previously.2,5 Final tip protein-BLPs were stored in PBS at −80 °C at a concentration of 50 

mg BLPs/mL. The amounts tip protein bound to BLPs was determined by using Coomassie 

stained SDS-PAA gels containing a bovine serum albumin (BSA) standard. The tip protein-

BLPs batches contained 85 µg of IpaD-PA, 45 µg of SipD-PA and 70 µg of LcrV-PA per mg 

BLPs.
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Sample Preparation—The protein samples were dialyzed into 20 mM citrate phosphate 

buffer with ionic strength of 0.15 (adjusted with sodium chloride) at a pH ranging from 3 to 

8. The protein samples were filtered with 0.45 µm syringe-driven filter units and the 

concentration was determined using UV absorbance spectroscopy at 280 nm. The final 

concentration of the proteins was adjusted to 0.15 mg/mL for these studies (Suppl. Table 

S1).

Each of the tip protein-BLPs (IpaD-BLPs, SipD-BLPs and LcrV-BLPs) samples were 

diluted to 1 mg BLPs/mL separately. The final solutions contained 85 µg of IpaD-PA, 45 µg 

of SipD-PA and 70 µg of LcrV-PA per mL. Each sample was centrifuged and the pellet 

containing tip protein-BLPs was resuspended with citrate-phosphate buffer at the desired 

pH. This step was repeated three times to stabilize the pH of samples.

Far-UV Circular Dichroism (CD)—The secondary structure of the tip proteins, tip-PA 

proteins and tip-BLPs was evaluated using a Jasco J-815 CD spectrapolarimeter (Jasco inc., 

Easton, MD) equipped with a Peltier temperature controller and a 6-position sample holder. 

CD spectra were acquired from 260 to 200 nm in 0.1 cm pathlength cuvettes at 10 °C. The 

data were recorded with a scanning speed of 50 nm/min, data integration time of 2 s and 1.0 

nm resolution. Thermally induced transitions of tip proteins and tip-PA proteins were 

acquired by monitoring the CD signal at 222 nm as a function of temperature every 2.5 °C 

over 10–90 °C employing a temperature ramp rate of 15 °C/h. The transitions for tip protein-

BLPs were monitored using CD signal at 225 nm, the wavelength at which the BLPs 

showed maximum CD signal. Samples were equilibrated to the target temperature (± 0.1 °C) 

for 5 s prior to each data point measurement. The CD signal for the tip proteins and tip-PA 

proteins was converted to molar ellipticity. Each sample was measured in triplicate and 

buffer blank readings were subtracted from the sample reading prior to data analysis.

Intrinsic Trp Fluorescence—IpaD and SipD each possess four Trp while LcrV contains 

one.19 Thus, intrinsic Trp fluorescence was measured as a function of temperature to 

monitor changes in the tertiary structure of the proteins. Fluorescence spectra for the 

samples were acquired using a Photon Technology International (PTI) spectrofluorometer 

(Birmingham, New Jersey) equipped with a temperature-controlled four position cuvette 

holder. To selectively excite Trp residues, samples were excited at 295 nm and the emission 

spectra were collected from 300 to 400 nm with a step size of 1 nm and 0.5 s integration 

time. The spectra were collected in 1 cm pathlength quartz cuvette every 2.5 °C over 10–85 

°C. The samples were equilibrated for 3 min prior to each measurement. The excitation and 

emission slit width was maintained at 3 nm throughout the study. Peak position wavelengths 

of the emission spectra were calculated using a mean spectral center of mass (msm) 

algorithm using Origin 8.6 software. The peak positions obtained using this method are 

usually shifted 10–12 nm higher than the actual peak positions, but display improved signal/

noise ratios. The fluorescence intensity at 330 nm was also monitored as a function of 

temperature. Each sample was measured in triplicate and scans of buffer solutions were 

subtracted from the sample readings prior to data analysis.

Static Light Scattering—Static light scattering (SLS) can provide a measure of thermally 

induced aggregation of proteins.22 These measurements were acquired simultaneously with 

Choudhari et al. Page 4

J Pharm Sci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



intrinsic Trp fluorescence measurements using a second detector oriented 180° from the 

fluorescence photomultiplier tube but still 90° relative to the excitation source. Light 

scattering intensity at 295 nm was monitored as a function of temperature every 2.5 °C over 

10–85 °C. Buffer scans were subtracted from the sample readings prior to data analysis.

Data Visualization Techniques

Three-Index Empirical Phase Diagrams (EPDs)—The thermal stability data acquired 

from multiple techniques for each protein sample were summarized in the form of three-

index empirical phase diagrams to provide comprehensive overviews of the data using a red, 

green and blue (RGB) color scheme. Detailed description on construction of EPDs is 

described elsewhere.23 Briefly, structural indices defined as correlation of the degree of 

structural change within a given range of environmental stress conditions, are calculated for 

each data set. In this study, the secondary structural index (SI) is calculated from the 222 nm 

CD molar ellipticity, the tertiary structural index (TI) was calculated from intrinsic Trp 

fluorescence peak position data and the aggregation index (AI) from the static light 

scattering data. The values for the structural index for a particular data set are normalized 

from 0 to 1, in which 1 represents native secondary or tertiary structure while 0 represents 

extensively conformationally altered secondary or tertiary structure. A value of 0 for AI 

indicates no aggregation while a value of 1 indicates the maximum extent of aggregation 

seen. Each of these structural indices was assigned to a color in an RGB color scheme to 

yield a map that provides a correlation between color and physical state of the protein at a 

given pH and temperature. In this case, the strongest negative CD signal represents the 

largest amount of secondary structure and is assigned to red while the weakest signal is 

assigned to black. For fluorescence peak position data, the native tertiary structure is 

assigned to green and the most shifted wavelength is black. Aggregation is represented by 

static light scattering where the minimum signal is assigned to black assuming there is no or 

minimal aggregation while the highest level of aggregation seen is assigned to blue. The 

contribution of each RGB component can be seen in the right hand panels next to the 

associated EPD. The three-index EPDs can then be interpreted as follows: Yellow (i.e. the 

sum of the “native state” colors) is associated with the native state of a protein where both 

secondary and tertiary structure are intact and no aggregation has occurred. Black is 

associated with significantly unfolded states with minimal retention of secondary and 

tertiary structure and no aggregation. Blue is associated with aggregated states with minimal 

secondary and tertiary structure and maximal aggregation. Finally, brown is associated with 

intermediate states of a protein with an intermediate loss of secondary and tertiary structure.

Radar Charts and Chernoff Face Diagrams—Multivariable data obtained from 

biophysical measurements could also be visualized through the use of radar charts and 

Chernoff faces, which serve as alternative data visualization techniques to the EPDs. These 

techniques map stability of the protein through image shapes rather than through colors. For 

example, in radar charts experimental values are related to the length of spikes of 

equiangular polygons, while facial expressions were used to depict physical state of the 

proteins under different pH-temperature conditions. These diagrams are presented in the 

supplementary material (Suppl. Fig. S12–S17). A detailed description of these techniques 

can be found elsewhere.23
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The Clustering Analysis—The three-index EPDs are displayed with dotted boundary 

that indicate regions with similar conformational states (i.e. similar colors). The boundary is 

first calculated using the k-Means clustering algorithm.24 The three indices used to make 

EPDs are supplied as an input to the algorithm with a range of values (2–10) as a number of 

clusters to be classified. Among these results, one is chosen that matches well with the 

interpretation of raw data. Because the k-Means clustering algorithm is stochastic and 

converges to a local optimum, even the chosen clustering result is not optimal. Based on the 

interpretation of experimental data, the clustering boundary can be manually edited 

afterwards.

Results

Biophysical characterization of the tip proteins IpaD, SipD and LcrV

Although we have previously published characterization of T3SS tip proteins,19–21 the 

purification schemes have been improved 16 and the mathematical methods used to construct 

EPDs has been optimized, as described above.23 Therefore, to compare the changes in the 

tip proteins attributable to the PA moiety and the BLPs, CD signals, fluorescence peak 

position and static light scattering data were collected as a function of temperature and pH to 

derive new three index EPDs. The far-UV CD spectra at 10 °C showed double minima at 

208 nm and 222 nm for IpaD, SipD and LcrV at every pH tested (Suppl. Fig. S1A–S3A 

respectively), indicating the expected significant amount of α-helical structure content. To 

obtain the secondary structure index, the molar ellipticity values at 222 nm as a function of 

temperature at pH 3–8 for all three tip proteins were obtained and demonstrated a pH 

dependent thermo-stability for each protein (Fig. 1A–C, red diagrams at right, and Suppl. 

Fig. S1B–S3B). For all three proteins, secondary structure under neutral buffer conditions 

(pH 6–8, right half of red diagrams) was maintained until ~50 °C where a gradual decrease 

in secondary structure began with a substantial loss of structure being seen by 75 °C. The 

gradual loss of secondary structure of IpaD and SipD occurred at lower temperatures as the 

pH was lowered with the degree of secondary structure loss by 70 °C being much greater at 

these pH values (pH 3–5). While this trend was also seen at pH 4 and 5 for LcrV, it appeared 

to retain most of its secondary structure at pH 3 regardless of temperature. When the tertiary 

structural index was examined (Fig. 1A–C, green diagrams at right, and Suppl. Fig. S1C–

S3C), a similar pattern is seen in which the loss of tertiary structure is greater in all proteins 

in acidic conditions relative to neutral conditions. Nevertheless, the initial disruption of the 

tertiary structures of IpaD and SipD in neutral buffers occurs earlier than seen in the 

secondary structural measurements with this phenomenon being more pronounced in SipD. 

Under acidic conditions the loss of tertiary structure increased with decreasing pH, as was 

seen in secondary structure results. Interestingly, the tertiary structure of LcrV in the neutral 

pH range is quite stable with a striking decrease in thermal stability as the pH is lowered. It 

is noteworthy that some of this apparent stability could be attributed to the method of 

calculating the diagram in which a longer wavelength associated with a red shift is assigned 

black while LcrV undergoes a blue shift before it undergoes a red shift in Trp fluorescence. 

Light scattering was measured to obtain the aggregation index (Fig. 1A–C, blue diagrams at 

right, and Suppl. Suppl. Fig. S1E–S3E). As the pH was decreased, an increase in 

aggregation was visualized with each protein exhibiting the least amount of light scattering 
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at neutral pH. Examination of the tertiary structure and aggregation state of LcrV at pH 3 

indicated that the thermal destabilization begins to occur at 40 °C in contrast to secondary 

structural measurements. It may be worth noting that LcrV is significantly different in 

primary structure relative to IpaD and SipD and contains only a single tryptophan residue.

Three-Index Empirical Phase Diagrams (EPDs) for IpaD, SipD and LcrV

Clustering analysis for the EPD of IpaD indicated the presence of three predominant regions 

(Fig. 1A, multi-colored panel). Region 1 in yellow at pH 3 to 8 up to 45–55 °C represented 

the native state of the protein as indicated by CD melts (red), fluorescence peak position 

(green) and aggregation (blue). Region 2 (at pH 3–8, from 45 up to 85 °C) represented a 

structurally altered physical state of IpaD, primarily reflecting a loss of secondary and 

tertiary structure. Region 3 (at pH 3–6, above 60 °C) represented an aggregated state of the 

protein as observed by LS (blue component) with the accompanying loss of some protein 

structure. Thus, the EPD clearly shows minimal protein disruption at lower temperatures 

regardless of pH, while a pH dependent increase in the onset of the aggregated state can be 

seen from pH 3 to 6. The EPD for SipD also depicted three regions. Like IpaD, region 1 

represented the native state of the protein and was quite broad with greater thermostability 

seen around neutral pH environments (Fig. 1B). As thermal stress was applied to SipD, the 

altered physical state with minimal aggregation accounted for most of the rest of the 

diagram seen as region 2. At higher temperatures at pH 3, a gray color was formed 

illustrating some loss of SipD secondary and tertiary structure along with aggregation 

(presumabily a significantly unfolded state) which is in contrast to pH 7 and 8 where less 

loss of secondary structure is seen and a brown color is created. Blue colored region 3 was 

dominated by the LS signal, reflecting the significant aggregation observed at pH 4 and 5. In 

contrast, the EPD for LcrV could be divided into 5 distinct regions (Fig. 1C). Region 1 

constituted the native conformation of the protein. Unlike IpaD and SipD, region 1 for LcrV 

spanned pH 6 to 8 up to 75 °C while region 2 occupied pH 5 up to 65 °C and at pH 7 and 8 

at higher temperatures, representing a partially unfolded state of the protein. The partially 

unfolded state of LcrV at pH 5 may be explained by low secondary structure content as 

indicated by the low CD signal at pH 5. Region 3 at pH 3 and 4 can be distinguished from 

region 1 for LcrV by comparing fluorescence intensities at the lower pH values to the 

intensities under neutral pH conditions. The intensity counts were lower at pH 3 and 4, while 

at pH 4 the intensity data possessed a transition occurring at a comparatively low 

temperature (~30 °C). This region depicted an altered conformation of LcrV under low pH 

conditions. Region 4 then represented an unfolded and aggregated state of the protein due to 

acidic pH, whereas region 5 represented completely aggregated protein primarily at pH 4 

and 5 above 62 °C as indicated by the SLS data. Comparing all three EPDs, LcrV illustrated 

a completely different pattern of stability than did IpaD and SipD. This was signified by 

lower stability of LcrV under acidic pH conditions. In general, maximum stability for all 

three tip proteins was observed near neutral pH conditions up to 55 °C.

Biophysical characterization of the proteins IpaD-PA, SipD-PA and LcrV-PA

Far-UV CD spectra for IpaD-PA, SipD-PA and LcrV-PA show an intense minima around 

207–208 nm with presence of a weak shoulder centered around 222 nm. This suggests 

presence of significant amount of 310-helix, and alpha helical structure with perhaps some 
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cross-beta structure.25 The ratio of the intensity at 222 nm over 207 nm (R = 

[θ]222nm /[θ]207nm) provides a criterion for distinguishing alpha and 310-helix. The R value 

is closer to unity for an α-helix, and a value between 0.4 to 1 suggests a mixed population of 

α-helix and 310-helix 26,27. The R values calculated were ~0.75 for IpaD PA, ~0.63 for 

SipD-PA and ~0.85 for LcrV-PA (Suppl. Fig. S4A, S5A and S6A respectively). This 

implies the conservation of secondary structure upon the production of the fusion tip-PA 

proteins, although the molar ellipticity was less intense for each fusion than it was for the 

respective tip proteins alone. Different stability patterns, however, were noted for the three 

tip-PA proteins when compared to the tip proteins themselves (Fig. 2A–C, red diagrams, and 

Suppl. Fig. –S6B). IpaD-PA exhibited a lower initial molar ellipticity and thus presumably 

less secondary structure at pH 7 and 8, which only modestly decreases with increasing 

thermal stress (Fig. 2A, red diagram). At the lower four pH values, only a modest loss of 

secondary structure was detected as temperature was increased. Little loss of secondary 

structure in SipD-PA was detected as thermal stress was increased except for pH 5 and 6 

where a complete loss of secondary structure is seen at high temperatures (Fig. 2B, red 

diagram, Suppl. Fig. S2B). In contrast to IpaD and SipD, the fusion of PA to LcrV had a 

significant impact on LcrV structure that was manifested by the formation of insoluble 

aggregates during dialysis at pH 3 and 4. As a result, no spectroscopic data could be 

collected on LcrV-PA at low pH. Little change in secondary structure was detected in LcrV 

under neutral pH conditions (Fig. 2C, red diagram, Suppl. Fig. S3B) while at pH 5 a modest 

decrease in secondary structure integrity was detected at lower temperatures with a complete 

loss of secondary structure seen above 70 °C. As with the secondary structure analyses, 

tertiary structural measurements indicated destabilization upon the fusion of PA to IpaD at 

higher pH with a significant loss of tertiary structure at higher temperatures (Fig. 2A, green 

diagram and Suppl. Fig. S4C). Regardless of pH, a distinct transition occurs at ~45–50 °C. 

At pH 3 the loss is more significant as the temperature increases. A modest loss of tertiary 

structure in SipD-PA was seen as thermal stress was applied regardless of pH (Fig. 2B, 

green diagram and Suppl. Fig. S5C). A more severe loss of tertiary structure was seen above 

50 °C at pH 3 and a complete loss is seen at pH 5 and 6 at high temperatures as was seen in 

secondary structural analysis. LcrV-PA exhibited a dual transition during tertiary structure 

upon thermally induced unfolding at neutral pH (Suppl. Fig. S6C). At pH 5, a complete loss 

of structure was detected above ~50 °C. Static light scattering data for the IpaD-PA revealed 

little aggregation at pH 3, 7 and 8 with complete aggregation occurring at higher 

temperatures at pH 4–6 (Fig. 2A, blue diagram and Suppl. Fig. S4E). SipD-PA began to 

aggregate at ~42–45 °C independent of the pH (Fig. 2B, blue diagram and Suppl. Fig. S5E), 

whereas, LcrV-PA was found to resist thermally induced aggregation at pH 6–8 with 

complete aggregation induced by thermal stress at ~47 °C at pH 5 (Fig. 2C, blue diagram 

and Suppl. Fig. S6E).

Three-Index Empirical Phase Diagrams (EPDs) for IpaD-PA, SipD-PA and LcrV-PA

The EPD for IpaD-PA was differentiated into three regions based on clustering analysis 

(Fig. 2A). Region 1 (yellow) is seen from 10 °C to 47–50 °C at every pH tested and 

represents the native conformation of IpaD-PA. In agreement with the three indices, the 

EPD indicated increased thermal stability at low pH than at higher pH values. Region 2 

(above 50 °C, pH 3–8) indicates a structurally altered physical state of the protein, probably 
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undergoing a transition from native to at least partially unfolded states. At pH 7 and 8, 

region 1 showed a greenish tint since the molar ellipticity was low under these pH 

conditions. This was not, however, identified as a distinct region in the cluster analysis. 

Aggregation and permanently unfolded states of the protein were seen as the blue colored 

region 3 towards higher temperatures. The EPD for SipD-PA displayed two distinct regions 

(Fig. 2B) with the native state (region 1) extending up to 55 °C across pH 3 to 8. The pH 

conditions 6 and 7 gave rise to the most stable forms of SipD-PA up to about 60 °C. Region 

2 was mainly comprised of a structurally altered state of the protein. No transitional region 

was clearly visible, although it might consist of a narrow boundary between regions 1 and 2. 

The EPD for LcrV-PA defines the native state of the protein (region 1) as that encompassed 

by the near neutral pH environment of pH 6–8 up to 40 °C (Fig. 2C). Regions 2 (at pH 6–8, 

40–70 °C) and 3 (at pH 6–8, above 65 °C) are assumed to represent molten globular and 

partially unfolded states, respectively. At pH 5 (region 4, up to 48 °C) LcrV-PA structure is 

conformationally altered which is manifested by decreased secondary and tertiary structure 

compared to higher pH. Regions 5 (between 48 and 68 °C) and 6 (above 68 °C) represent 

aggregated and extensively denatured state of the protein. Comparison of the EPDs for the 

three tip-PA proteins again demonstrates that LcrV-PA behaves differently than does IpaD-

PA and SipD-PA under different environmental stresses. This is particularly true at acidic 

pH where it either completely aggregates to form insoluble material or quickly aggregates 

under thermal stress. The PA seems to have only a marginal impact on IpaD and SipD 

behavior.

Biophysical characterization of IpaD-BLPs, SipD-BLPs and LcrV-BLPs—The 

minima in the far-UV CD spectra at 10 °C for the tip protein-BLP complexes (lpaD-BLPs, 

SipD-BLPs and LcrV-BLPs) were shifted to ~225 nm. The minimum at 208 nm, however, 

was totally missing for each protein-BLPs complex (Suppl. Fig. S7A–S9A). As a general 

observation, the 225 nm minimum was more intense under neutral pH conditions for all 

three tip protein-BLPs. The majority of the CD signal appeared to arise from BLPs as 

suggested by the spectra derived from BLPs itself (Suppl. Fig. S10A). This is similar to the 

spectra seen for the live attenuated vaccine Salmonella Typhi Ty21a.28 When the IpaD- and 

SipD-BLPs were transferred into pH 3 buffer, degradation of the tip protein occurred (data 

not shown). Therefore, biophysical data at this pH were not included in the three indices for 

generation of a final EPD. Thermal stress on the tip protein-BLPs forced a loss of secondary 

structure as seen by a decrease in intensity at pH ranging from 4 to 6 (Fig. 3A–C, red 

diagram). In contrast, the signal remained almost unchanged at pH 7 and 8 for the tip 

protein-BLPs (Suppl. Fig. S7A, S8A and S9A). Because the signal was dominated by the 

BLPs, it is likely that the neutral pH environment helps to maintain structural integrity of the 

BLPs anchored with the tip proteins. The intrinsic Trp fluorescence peak position for IpaD-

BLPs at pH 7 and 8 showed a decrease in tertiary structure as the temperature increased 

indicating partial unfolding of the protein (Suppl. Fig. S7C and D). Conversely, at pH 4, 5 

and 6, little change in tertiary structure was detected. The tertiary structure of the SipD-

BLPs exhibited spontaneous unfolding regardless of the pH. (Suppl. Fig. S8C and D). For 

LcrV-BLPs, tertiary structure was disrupted as thermal stress was applied in a pH dependent 

manner with greater stability observed at higher pH. (Suppl. Fig. S9C and D). Light 

scattering data provided further insight into the structural integrity of the tip proteins 
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anchored to the BLPs (Suppl. Fig. S7E, S8E and S9E). Initially high light scattering 

intensities decreased upon applying thermal stress, indicating settling of BLPs in the cuvette. 

This is probably a result of protein aggregation at higher temperatures. The light scattering 

data suggested near neutral pH conditions to be suitable for maintaining the structural 

integrity and absence of aggregation for the tip protein-BLPs.

Three-Index Empirical Phase Diagrams (EPDs) for IpaD-BLPs, SipD-BLPs and 
LcrV-BLPs—Unlike the EPDs associated with the tip proteins and tip protein-PAs, the 

EPDs of the tip protein-BLPs are much more complex. The EPD for IpaD-BLPs represent 

region 1 at pH 7 and 8 as the most stable state (Fig 3A). This was characterized by the 

absence of any sharp transitions in the CD and fluorescence data. A comparatively less 

stable region 2 at pH 4, 5 and 6 up to 65 °C was defined by a lower CD signal and revealed 

transitions at higher temperatures. Region 3 at pH 4–6 present at higher temperatures (above 

65–70 °C) involved protein aggregation including clumping and settling of BLPs. Region 1 

of the EPD for SipD-BLPs defined the most stable conditions for these complexes which 

maintained integrity up to ~65 °C at pH 6 and 7 (Fig. 3B). This region also appeared at pH 8 

but extended only up to ~40 °C, thus indicating comparatively less stability at this pH. 

Region 2 at pH 4 and 5 was classified as an unstable region because of the low CD signal. 

Region 3 at higher temperatures at pH 8 is consistent with an altered conformation as 

observed by transitions in the fluorescence data and with aggregation. Region 4 (spanning 

pH 4–6 at high temperature) included settling of BLPs caused by protein aggregation. This 

was confirmed by a decrease in the light scattering intensity. The most stable region for 

LcrV-BLPs spanned pH 7–8 in the EPD (region 1) with maximum stability at pH 7 up to 

~50 °C (Fig. 3C). Region 2 at pH 6 below 60 °C and region 3 at pH 5 up to 20 °C represent 

partially unfolded regions since the secondary structure index begins to darken. Region 4 at 

pH 7 and 8 above 55 °C defined an altered physical state and also corresponded to settling of 

BLPs. Region 5 at pH 5 and 6 represented unfolding and aggregation of the LcrV-BLPs.

Discussion

The tip proteins from type three secretion systems of S. flexneri (IpaD), S. Typhimurium 

(SipD) and Y. enterocolitica (LcrV) have been identified as protective antigens against 

infection by Shigella spp., 16–18 S. Typhimurium (Harrison, in preparation) and Yersinia 

spp.15 As a mechanism to increase immune stimulation, these proteins were genetically 

fused to a peptidoglycan anchor domain (PA) and then bound to BLPs produced from L 

lactis. While antigen discovery is the initial step in vaccine development, a vaccine can fail 

if not properly formulated due to instability of the antigen resulting from chemical 

modification, conformational alteration and/or aggregation. Unfortunately, assessment of 

antigen stability and subsequent formulation is often not adequately addressed during the 

early stages of vaccine development. We therefore used multiple spectroscopic and light 

scattering techniques to assess the structural stability of the proteins alone, fused to PA, and 

attached to BLPs under a range of pH and temperature stresses. The large amount of 

resultant data were then consolidated to generate three index EPDs which facilitate visual 

interpretation and comparison of antigen stability that can then be used to design excipient 

screens and the formulation of a final vaccine. We previously generated EPDs for these tip 
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proteins. We now, however, apply an improved EPD format by employing the three-index 

EPD and increasing the level of protein purity. It was thus necessary to create new EPDs for 

comparison with those generated from the tip protein-PA and tip protein-BLPs.

The T3SS tip protein family is structurally characterized by a dumbbell-like shape where the 

handle is an anti-parallel coiled-coil that supports overall structural integrity.19,29 In 

contrast, the size and the shape of the N- and C-termini vary between subfamilies and 

provide pathogen-specific functions.29 The N-terminal domain of the IpaD family is thermo-

labile, which results in two thermal transitions 20,29,30 that can be seen within the three 

regions of the EPDs for IpaD and SipD. Both proteins exhibit native structural features with 

no aggregation at all pH values with pH-dependent thermal boundaries at 45–55 °C. 

Structurally altered states appear at all pH values above this boundary and an aggregated 

state is seen at high temperatures at low pH. In contrast, LcrV is from a different subfamily 

and has a distinct EPD. The LcrV native structure is seen at neutral pH and it is retained at 

higher temperatures than IpaD and SipD. At acidic pH, however, LcrV loses its structural 

integrity. Based on fluorescence intensity, region 3 (Fig. 1C) represents less stable protein 

than region 1 since the starting intensity at 10 °C at pH 3 and 4 is reduced compared to 

higher pH. Nevertheless, all three proteins maintain their native state at neutral pH under 

low to moderate thermal stress.

The addition of PA to the C-terminus of each tip protein had a negative impact on 

maintenance of their native structure during thermal stress. Unlike SipD-PA, IpaD-PA was 

slightly less stable under neutral pH conditions and both IpaD-PA and SipD-PA were 

vulnerable to aggregation as the temperature was raised above 50 °C. Close examination of 

data from IpaD-PA and SipD-PA reveals that the CD spectra, thermal melts and 

fluorescence peak positions differ from IpaD and SipD alone. In fact, they seem to have 

taken on many of the characteristics of the PA domain (Suppl. Fig. S11). First, the double 

transitions seen in IpaD and SipD are missing. Second, the initial fluorescence peak position 

of the PA fusion proteins was ~8 nm higher than that of the tip proteins alone. This may be 

because the PA domain by itself contains five Trp residues. Then, as thermal stress is 

applied, a completely different melt is seen with a large blue shift in the middle of the melt 

rather than the continuous red shift observed with the tip proteins alone. This gives a 

completely different tertiary index diagram. Striking changes in the behavior of LcrV were 

observed upon addition of the PA domain. LcrV-PA formed insoluble aggregates during 

dialysis at pH 3 and 4 and the protein was sensitive to thermal stress at pH 5. Furthermore, 

the structural stability of LcrV-PA was significantly compromised at pH 6, 7 and 8 relative 

to LcrV alone.

Only five pH conditions could be examined for IpaD-BLPs and SipD-BLPs since these tip 

proteins degraded when transferred to pH 3. While it is unclear why these proteins become 

physically unstable, it is consistent with the instability seen for all the tip proteins at low pH 

when they are fused to the PA before or after binding BLPs. In general, many of the 

spectroscopic characteristics of the tip protein-BLPs can be attributed to the BLP itself 

which is not completely devoid of protein content. This is most notable in the CD spectra 

where the signals for all tip protein-BLPs were dominated by the BLPs with the presence of 

only a single minimum at ~225 nm. At neutral pH, a strong signal minimum ranged from 
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222 to 225 nm. At lower pH, the minimum shifted to 225–227 nm with reduced intensity. 

The BLPs alone tend to follow this same pattern at pH 7 and 8, which is distinct from what 

is seen at pH 4 to 6. While this phenomenon can generally describe the tip protein-BLP 

complexes, protein-specific traits that are unique to each tip protein-BLP can also be seen in 

the EPDs.

The EPD for IpaD-BLP clearly exhibits a stability boundary between regions 1 and 2 with 

pH 7 and 8 samples exhibiting higher stability than at lower pH and pH 8 exhibiting the 

highest stability (Fig. 3). At pH 4–6 the secondary structure index initially shows less 

intensity with a modest decrease until higher temperatures are reached where aggregation 

occurs. This stability boundary can be attributed to IpaD rather than the BLPs because a less 

distinct boundary can be detected between pH 6 and 7 in the IpaD and IpaD-PA EPDs. 

Regions 1 and 2 in the SipD-BLPs EPD were differentiated based on reduced secondary 

structure content at low pH. The subtle changes within region 1 are associated with the LS 

intensity data, which for the pH 6 to 8 range begin at about the same level but at pH 4 and 5 

start at a higher intensity. Thus, region 1 in the EPD represents the most stable region for 

SipD-BLPs at lower temperatures from pH 6 to 8. LcrV-BLPs reflected the pH dependent 

stability pattern attributable to LcrV-PA and, like IpaD-BLPs, had greatest overall stability 

at pH 7 and 8, but with greater sensitivity to thermal stress than IpaD-BLPs and SipD-BLPs. 

This again suggested that LcrV has a biophysical character that is different from IpaD and 

SipD.

The EPDs of the three tip proteins suggest that the two subfamilies represented here have 

distinct characteristics before and after fusion to PA with the anchor having a more 

moderate effect on the properties of LcrV. Perhaps the most significant finding of this study 

is the protein specific stability conferred upon anchoring of the tip proteins to the BLPs 

along with the ability to differentiate the three tip proteins’ behavior. Nevertheless, the BLP 

moiety was the major contributor to all three indices leaving the protein moiety to represent 

the more subtle yet defining contributor. These EPDs will now be used to direct excipient 

screening. For IpaD-BLPs, which show minimal aggregation, excipients will be screened to 

promote structural stability at pH 7 and 8 as thermal stress is applied. Similarly, the SipD-

BLPs and LcrV-BLPs exhibit aggregation tendencies at low thermal stress that must be 

addressed by addition of stabilizers (excipients). Excipients will be needed to raise the 

thermal boundaries of the EPD, thereby increasing the window in which these candidate 

vaccines are stable. It is worth noting that a large amount of spectral data was collected here 

under thermal and pH stress and then consolidated into an EPD format. These modified 

EPDs and their associated indices provide a new and convenient platform for analyzing and 

stabilizing a growing number of new biopharmaceuticals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Three-index empirical phase diagrams (EPDs) for IpaD (A), SipD (B) and LcrV (C), 

representing the conformational stability of the tip proteins as a function of pH and 

temperature. The red, green and blue panels at the right define individual component indices 

for secondary structure (CD), tertiary structure (fluorescence peak position) and aggregation 

behavior (LS), respectively.
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Figure 2. 
Three-index empirical phase diagrams (EPDs) for IpaD-PA (A), SipD-PA (B) and LcrV-PA 

(C), representing the conformational stability of the proteins as a function of pH and 

temperature. The red, green and blue panels at the right define individual component indices 

for secondary structure (CD), tertiary structure (fluorescence peak position) and aggregation 

behavior (LS), respectively.

Choudhari et al. Page 16

J Pharm Sci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Three-index empirical phase diagrams (EPDs) for IpaD-BLPs (A), SipD-BLPs (B) and 

LcrV-BLPs (C), representing the conformational stability of the tip proteins attached to the 

BLPs as a function of pH and temperature. The red, green and blue panels at the right define 

individual component indices for secondary structure (CD), tertiary structure (fluorescence 

peak position) and aggregation behavior (LS), respectively.
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