29 research outputs found

    Role for formin-like 1-dependent acto-myosin assembly in lipid droplet dynamics and lipid storage

    Get PDF
    Lipid droplets (LDs) are cellular organelles specialized in triacylglycerol (TG) storage undergoing homotypic clustering and fusion. In non-adipocytic cells with numerous LDs this is balanced by poorly understood droplet dissociation mechanisms. We identify non-muscle myosin IIa (NMIIa/MYH-9) and formin-like 1 (FMNL1) in the LD proteome. NMIIa and actin filaments concentrate around LDs, and form transient foci between dissociating LDs. NMIIa depletion results in decreased LD dissociations, enlarged LDs, decreased hydrolysis and increased storage of TGs. FMNL1 is required for actin assembly on LDs in vitro and for NMIIa recruitment to LDs in cells. We propose a novel acto-myosin structure regulating lipid storage: FMNL1-dependent assembly of myosin II-functionalized actin filaments on LDs facilitates their dissociation, thereby affecting LD surface-to-volume ratio and enzyme accessibility to TGs. In neutrophilic leucocytes from MYH9-related disease patients NMIIa inclusions are accompanied by increased lipid storage in droplets, suggesting that NMIIa dysfunction may contribute to lipid imbalance in man.Peer reviewe

    Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells

    Get PDF
    Background: Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive type of cancer that lacks effective targeted therapy. Despite detailed molecular profiling, no targeted therapy has been established. Hence, with the aim of gaining deeper understanding of the functional differences of TNBC subtypes and how that may relate to potential novel therapeutic strategies, we studied comprehensive anticancer-agent responses among a panel of TNBC cell lines. Method: The responses of 301 approved and investigational oncology compounds were measured in 16 TNBC cell lines applying a functional profiling approach. To go beyond the standard drug viability effect profiling, which has been used in most chemosensitivity studies, we utilized a multiplexed readout for both cell viability and cytotoxicity, allowing us to differentiate between cytostatic and cytotoxic responses. Results: Our approach revealed that most single-agent anti-cancer compounds that showed activity for the viability readout had no or little cytotoxic effects. Major compound classes that exhibited this type of response included anti-mitotics, mTOR, CDK, and metabolic inhibitors, as well as many agents selectively inhibiting oncogene-activated pathways. However, within the broad viability-acting classes of compounds, there were often subsets of cell lines that responded by cell death, suggesting that these cells are particularly vulnerable to the tested substance. In those cases we could identify differential levels of protein markers associated with cytotoxic responses. For example, PAI-1, MAPK phosphatase and Notch-3 levels associated with cytotoxic responses to mitotic and proteasome inhibitors, suggesting that these might serve as markers of response also in clinical settings. Furthermore, the cytotoxicity readout highlighted selective synergistic and synthetic lethal drug combinations that were missed by the cell viability readouts. For instance, the MEK inhibitor trametinib synergized with PARP inhibitors. Similarly, combination of two non-cytotoxic compounds, the rapamycin analog everolimus and an ATP-competitive mTOR inhibitor dactolisib, showed synthetic lethality in several mTOR-addicted cell lines. Conclusions: Taken together, by studying the combination of cytotoxic and cytostatic drug responses, we identified a deeper spectrum of cellular responses both to single agents and combinations that may be highly relevant for identifying precision medicine approaches in TNBC as well as in other types of cancers.Peer reviewe

    OSBP-related protein-2 (ORP2) : a novel Akt effector that controls cellular energy metabolism

    Get PDF
    ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER-LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER-LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281-1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation.Peer reviewe

    OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism

    Get PDF
    ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)—lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3ÎČ(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER–LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER–LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281–1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation

    Seipin regulates ER-lipid droplet contacts and cargo delivery

    Get PDF
    Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER-LD contacts in human cells, typically via one mobile focal point per LD Seipin appears critical for such contacts since ER-LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin-deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre-existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER-LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.Peer reviewe

    Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes

    Get PDF
    Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.Peer reviewe

    Alimentation at the Court of the Olomouc Bishop Stanislaus II. PavlovskĂœ of Pavlovice (1579-1598)

    No full text
    (A) Heat map highlighting/differentiating the proteasome inhibitors sensitive and insensitive cell lines based on cytotoxicity exhibited by two proteasome inhibitors. (B) Box plot showing the differential expression of protein and phosphoprotein levels (published data) between mitotic inhibitor sensitive and insensitive cell lines. (PDF 104 kb

    Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways

    Get PDF
    <div><p>A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions warranting further study in individual cancer cases.</p></div

    Kinases selected by TIMMA on the MCF7 cancer cell line.

    No full text
    <p>(<b>A</b>) Histogram of average siRNA Z-scores for a set of 12 kinases selected randomly, as compared to the average Z-score (0.926) for the TIMMA-selected optimal target set (marked on the right tail with its empirical <i>p</i>-value). (<b>B</b>) Scatter plot between the predicted treatment efficacy and the siRNA Z-score for the selected 12 kinases. The average Z-score (0.349) for the kinome-wide siRNA data is plotted as the dotted horizontal line.</p
    corecore