135 research outputs found
Tibolone inhibits bone resorption without secondary positive effects on cartilage degradation
<p>Abstract</p> <p>Background</p> <p>Osteoarthritis is associated with increased bone resorption and increased cartilage degradation in the subchondral bone and joint. The objective of the present study was to determine whether Tibolone, a synthetic steroid with estrogenic, androgenic, and progestogenic properties, would have similar dual actions on both bone and cartilage turnover, as reported previously with some SERMS and HRT.</p> <p>Methods</p> <p>This study was a secondary analysis of ninety-one healthy postmenopausal women aged 52–75 yrs entered a 2-yr double blind, randomized, placebo-controlled study of treatment with either 1.25 mg/day (n = 36), or 2.5 mg/day Tibolone (n = 35), or placebo (n = 20), (J Clin Endocrinol Metab. 1996 Jul;81(7):2419–22) Second void morning urine samples were collected at baseline, and at 3, 6, 12, and 24 months. Urine CrossLaps<sup>® </sup>ELISA (CTX-I) and Urine CartiLaps<sup>® </sup>ELISA (CTX-II) was investigated as markers of bone resorption and cartilage degradation, respectively.</p> <p>Results</p> <p>Tibolone significantly (P < 0.001) suppressed bone resorption by approximately 60%. In contrast, no effect was observed on cartilage degradation.</p> <p>Conclusion</p> <p>These data suggest uncoupling of the bone and cartilage effects of the synthetic steroid, Tibolone. Bone resorption was significantly decreased, whereas cartilage degradation was unchanged. These effects are in contrast to those observed some SERMs with effects on both bone and cartilage degradation. These effects may in part be described by the complicated pharmacology of Tibolone on testosterone, estrogen and progesterone receptors.</p
Hot and cold fibrosis: The role of serum biomarkers to assess immune mechanisms and ECM-cell interactions in human fibrosis
\ua9 2025 The Author(s)Fibrosis is a pathological condition characterised by excessive accumulation of extracellular matrix (ECM) components, particularly collagens, leading to tissue scarring and organ dysfunction. In fibrosis, an imbalance between collagen synthesis (fibrogenesis) and degradation (fibrolysis) results in the deposition of fibrillar collagens disrupting the structural integrity of the ECM and, consequently, tissue architecture. Fibrosis is associated with a wide range of chronic diseases, including cirrhosis, kidney fibrosis, pulmonary fibrosis, and autoimmune diseases. Recently, the concept of “hot” and “cold” fibrosis has emerged, referring to the immune status within fibrotic tissues and the nature of fibrogenic signalling. Hot fibrosis is characterised by active immune cell infiltration and inflammation, while cold fibrosis is associated with auto- and paracrine myofibroblast activation, immune cell exclusion and quiescence. In this article, we explore the relationship between hot and cold fibrosis, the role of various types of collagens and their biologically active fragments in modulating the immune system, and how serological ECM biomarkers can help improve our understanding of the disease-relevant interactions between immune and mesenchymal cells in fibrotic tissues. Additionally, we draw lessons from immuno-oncology research in solid tumours to shed light on potential strategies for fibrosis treatment and highlight the advantage of having a “hot fibrotic environment” to treat fibrosis by enhancing collagen degradation through modulation of the immune system
ECM formation and degradation during fibrosis, repair, and regeneration
\ua9 The Author(s) 2025.Imperfect attempts at organ repair after repeated injury result in aberrant formation of extracellular matrix (ECM) and loss of tissue structure. This abnormal ECM goes from being a consequence of cellular dysregulation to become the backbone of a persistently fibrotic cell niche that compromises organic function and ultimately drives systemic disease. Here, we review our current understanding of the structure of the ECM, the mechanisms behind organ-specific fibrosis, resolution, healing and regeneration, as well as the development of anti-fibrotic strategies. We also discuss the design of biomarkers to investigate fibrosis pathophysiology, track fibrosis progression, systemic damage, and fibrosis resolution
Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature
Imaging techniques are the standard method for assessment of fracture healing processes. However, these methods are perhaps not entirely reliable for early detection of complications, the most frequent of these being delayed union and non-union. A prompt diagnosis of such disorders could prevent prolonged patient distress and disability. Efforts should be directed towards the development of new technologies for improving accuracy in diagnosing complications following bone fractures. The variation in the levels of bone turnover markers (BTMs) have been assessed with regard to there ability to predict impaired fracture healing at an early stage, nevertheless the conclusions of some studies are not consensual. In this article the authors have revised the potential of BTMs as early predictors of prognosis in adult patients presenting traumatic bone fractures but who did not suffer from osteopenia or postmenopausal osteoporosis. The available information from the different studies performed in this field was systematized in order to highlight the most promising BTMs for the assessment of fracture healing outcome.As técnicas imagiológicas são o método convencional para a avaliação dos processos de cicatrização das fraturas. No entanto, estes métodos não são talvez totalmente confiáveis para a deteção precoce de complicações, as mais frequentes destas sendo o atraso da união e a não-união. Um diagnóstico eficaz destas desordens poderia prevenir a dor e a incapacidade prolongada do paciente. Esforços devem ser dirigidos no sentido do desenvolvimento de novas tecnologias para melhorar a exatidão no diagnóstico de complicações após fraturas ósseas. A variação nos níveis dos marcadores do turnover ósseo (BTMs) têm sido avaliados com vista à sua capacidade para prever o comprometimento da cicatrização das fraturas numa fase inicial, no entanto, as conclusões de alguns estudos não são consensuais. Neste artigo os autores fizeram uma revisão do potencial dos BTMs como fatores de previsibilidade precoce do prognóstico em doentes adultos que apresentavam fraturas ósseas traumáticas mas que não sofriam de osteopenia ou osteoporose pós-menopausa. A informação disponível nos diferentes estudos realizados neste campo foi sistematizada com vista a evidenciar-se os BTMs mais promissores para a avaliação da evolução da cicatrização das fraturas.SFRH/BD/45018/200
Bone turnover markers in sheep and goat: a review of the scientific literature
Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the
Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq), Brazil, for his PhD
scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio
Serological markers of extracellular matrix remodeling predict transplant‐free survival in primary sclerosing cholangitis
BACKGROUND: Primary sclerosing cholangitis is a progressive liver disease with a remarkably variable course. Biomarkers of disease activity or prognostic models predicting outcome at an individual level are currently not established. AIM: To evaluate the prognostic utility of four biomarkers of basement membrane and interstitial extracellular matrix remodeling in patients with primary sclerosing cholangitis. METHODS: Serum samples were available from 138 large‐duct primary sclerosing cholangitis patients (of which 102 [74%] with IBD) recruited 2008‐2012 and 52 ulcerative colitis patients (controls). The median follow‐up time was 2.2 (range 0‐4.3) years. Specific biomarkers of type III and V collagen formation (PRO‐C3 and PRO‐C5, respectively) and type III and IV collagen degradation (C3M and C4M, respectively) were assessed. The Enhanced Liver Fibrosis test, including procollagen type III N‐terminal peptide, tissue inhibitor of metalloproteinase‐1 and hyaluronic acid was assessed for comparison. RESULTS: All markers were elevated in primary sclerosing cholangitis compared to ulcerative colitis patients (P < 0.001). PRO‐C3 showed the largest difference between the two groups with a threefold increase in primary sclerosing cholangitis compared to ulcerative colitis patients. Patients with high baseline serum levels of all markers, except C3M, had shorter survival compared to patients with low baseline serum levels (P < 0.001). Combining PRO‐C3 and PRO‐C5 the odds ratio for predicting transplant‐free survival was 47 compared to the Enhanced Liver Fibrosis test's odds ratio of 11. CONCLUSIONS: Extracellular matrix remodeling is elevated in primary sclerosing cholangitis patients compared to ulcerative colitis patients. Furthermore, the interstitial matrix marker PRO‐C3 was identified as a potent prognostic marker and an independent predictor of transplant‐free survival in primary sclerosing cholangitis
Serum levels of fibrogenesis biomarkers reveal distinct endotypes predictive of response to weight loss in advanced nonalcoholic fatty liver disease
\ua9 2023 Lippincott Williams and Wilkins. All rights reserved.Background: NAFLD is associated with activation of fibroblasts and hepatic fibrosis. Substantial patient heterogeneity exists, so it remains challenging to risk-stratify patients. We hypothesized that the amount of fibroblast activity, as assessed by circulating biomarkers of collagen formation, can define a "high-risk, high-fibrogenesis" patient endotype that exhibits greater fibroblast activity and potentially more progressive disease, and this endotype may be more amendable to dietary intervention. Methods: Patients with clinically confirmed advanced NAFLD were prescribed a very low-calorie diet (VLCD) intervention (800 kcal/d) to induce weight loss, achieved using total diet replacement. Serum markers of type III (PRO-C3) and IV collagen (PRO-C4) fibrogenesis were assessed at baseline every second week until the end of the VLCD, and 4 weeks post-VLCD and at 9 months follow-up. Results: Twenty-six subjects had a mean weight loss of 9.7% with VLCD. This was associated with significant improvements in liver biochemistry. When stratified by baseline PRO-C3 and PRO-C4 into distinct fibrosis endotypes, these predicted substantial differences in collagen fibrogenesis marker dynamics in response to VLCD. Patients in the high activity group (PRO-C3 11.4 ng/mL and/or PRO-C4 236.5 ng/mL) exhibited a marked reduction of collagen fibrogenesis, ranging from a 40%-55% decrease in PRO-C3 and PRO-C4, while fibrogenesis remained unchanged in the low activity group. The biochemical response to weight loss was substantially greater in patients a priori exhibiting a high fibroblast activity endotype in contrast to patients with low activity. Conclusions: Thus, the likelihood of treatment response may be predicted at baseline by quantification of fibrogenesis biomarkers
Forced vital capacity trajectories in patients with idiopathic pulmonary fibrosis: a secondary analysis of a multicentre, prospective, observational cohort
BACKGROUND: Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with a variable clinical trajectory. Decline in forced vital capacity (FVC) is the main indicator of progression; however, missingness prevents long-term analysis of patterns in lung function. We aimed to identify distinct clusters of lung function trajectory among patients with idiopathic pulmonary fibrosis using machine learning techniques. METHODS: We did a secondary analysis of longitudinal data on FVC collected from a cohort of patients with idiopathic pulmonary fibrosis from the PROFILE study; a multicentre, prospective, observational cohort study. We evaluated the imputation performance of conventional and machine learning techniques to impute missing data and then analysed the fully imputed dataset by unsupervised clustering using self-organising maps. We compared anthropometric features, genomic associations, serum biomarkers, and clinical outcomes between clusters. We also performed a replication of the analysis on data from a cohort of patients with idiopathic pulmonary fibrosis from an independent dataset, obtained from the Chicago Consortium. FINDINGS: 415 (71%) of 581 participants recruited into the PROFILE study were eligible for further analysis. An unsupervised machine learning algorithm had the lowest imputation error among tested methods, and self-organising maps identified four distinct clusters (1-4), which was confirmed by sensitivity analysis. Cluster 1 comprised 140 (34%) participants and was associated with a disease trajectory showing a linear decline in FVC over 3 years. Cluster 2 comprised 100 (24%) participants and was associated with a trajectory showing an initial improvement in FVC before subsequently decreasing. Cluster 3 comprised 113 (27%) participants and was associated with a trajectory showing an initial decline in FVC before subsequent stabilisation. Cluster 4 comprised 62 (15%) participants and was associated with a trajectory showing stable lung function. Median survival was shortest in cluster 1 (2·87 years [IQR 2·29-3·40]) and cluster 3 (2·23 years [1·75-3·84]), followed by cluster 2 (4·74 years [3·96-5·73]), and was longest in cluster 4 (5·56 years [5·18-6·62]). Baseline FEV1 to FVC ratio and concentrations of the biomarker SP-D were significantly higher in clusters 1 and 3. Similar lung function clusters with some shared anthropometric features were identified in the replication cohort. INTERPRETATION: Using a data-driven unsupervised approach, we identified four clusters of lung function trajectory with distinct clinical and biochemical features. Enriching or stratifying longitudinal spirometric data into clusters might optimise evaluation of intervention efficacy during clinical trials and patient management. FUNDING: National Institute for Health and Care Research, Medical Research Council, and GlaxoSmithKline
Biomarkers of collagen turnover are related to annual change in FEV1 in patients with chronic obstructive pulmonary disease within the ECLIPSE study
BACKGROUND: Change in forced expiratory volume in one second (FEV1) is important for defining severity of chronic obstructive pulmonary disease (COPD). Serological neoepitope markers of collagen turnover may predict rate of change in FEV1. METHODS: One thousand COPD subjects from the observational, multicentre, three-year ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study (NCT00292552, trial registration in February 2006) were included. Matrix metalloproteinase (MMP)-generated fragments of collagen type I, and type VI (C1M and C6M) were assessed in month six serum samples. A random-coefficient model with both a random intercept and a random slope was used to test the ability of the markers to predict post-dose bronchodilator FEV1 (PD-FEV1) change over two years adjusting for sex, age, BMI, smoking, bronchodilator reversibility, prior exacerbations, emphysema and chronic bronchitis status at baseline. RESULTS: Annual change of PD-FEV1 was estimated from a linear model for the two-year study period. Serum C1M and C6M were independent predictors of lung function change (p = 0.007/0.005). Smoking, bronchodilator reversibility, plasma hsCRP and emphysema were also significant predictors. The effect estimate between annual change in PD-FEV1 per one standard deviation (1SD) increase of C1M and C6M was +10.4 mL/yr. and +8.6 mL/yr. C1M, and C6M, had a significant association with baseline FEV1. CONCLUSION: We demonstrated that markers of tissue turnover were significantly associated with lung function change. These markers may function as prognostic biomarkers and possibly as efficacy biomarkers in clinical trials focusing on lung function change in COPD. TRIAL REGISTRATION: NCT00292552 , Retrospectively registered, trial registration in February 2006
Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis
<p>Abstract</p> <p>Background</p> <p>Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens by proteases produces small fragments, so-called neoepitopes, which are released systemically. Technologies investigating MMP-generated fragments of collagens may provide more useful information than traditional serological assays that crudely measure total protein. In the present study, we developed an ELISA for the quantification of a neoepitope generated by MMP degradation of type IV collagen and evaluated the association of this neoepitope with liver fibrosis in two animal models.</p> <p>Methods</p> <p>Type IV collagen was degraded <it>in vitro </it>by a variety of proteases. Mass spectrometric analysis revealed more than 200 different degradation fragments. A specific peptide sequence, 1438'GTPSVDHGFL'1447 (CO4-MMP), in the α1 chain of type IV collagen generated by MMP-9 was selected for ELISA development. ELISA was used to determine serum levels of the CO4-MMP neoepitope in two rat models of liver fibrosis: inhalation of carbon tetrachloride (CCl<sub>4</sub>) and bile duct ligation (BDL). The levels were correlated to histological findings using Sirius red staining.</p> <p>Results</p> <p>A technically robust assay was produced that is specific to the type IV degradation fragment, GTPSVDHGFL. CO4-MMP serum levels increased significantly in all BDL groups compared to baseline, with a maximum increase of 248% seen two weeks after BDL. There were no changes in CO4-MMP levels in sham-operated rats. In the CCl<sub>4 </sub>model, levels of CO4-MMP were significantly elevated at weeks 12, 16 and 20 compared to baseline levels, with a maximum increase of 88% after 20 weeks. CO4-MMP levels correlated to Sirius red staining results.</p> <p>Conclusion</p> <p>This ELISA is the first assay developed for assessment of proteolytic degraded type IV collagen, which, by enabling quantification of basement membrane degradation, could be relevant in investigating various fibrogenic pathologies. The CO4-MMP degradation fragment was highly associated with liver fibrosis in the two animal models studied.</p
- …
