766 research outputs found
Gods, Heroes, & Kings: The Battle for Mythic Britain
The islands of Britain have been a crossroads of gods, heroes, and kings-those of flesh as well as those of myth-for thousands of years. Successive waves of invasion brought distinctive legends, rites, and beliefs. The ancient Celts displaced earlier indigenous peoples, only to find themselves displaced in turn by the Romans, who then abandoned the islands to Germanic tribes, a people themselves nearly overcome in time by an influx of Scandinavians. With each wave of invaders came a battle for the mythic mind of the Isles as the newcomer\u27s belief system met with the existing systems of gods, legends, and myths.In Gods, Heroes, and Kings, medievalist Christopher Fee and veteran myth scholar David Leeming unearth the layers of the British Isles\u27 unique folkloric tradition to discover how this body of seemingly disparate tales developed. The authors find a virtual battlefield of myths in which pagan and Judeo-Christian beliefs fought for dominance, and classical, Anglo-Saxon, Germanic, and Celtic narrative threads became tangled together. The resulting body of legends became a strange but coherent hybrid, so that by the time Chaucer wrote The Wife of Bath\u27s Tale in the fourteenth century, a Christian theme of redemption fought for prominence with a tripartite Celtic goddess and the Arthurian legends of Sir Gawain-itself a hybrid mythology.Without a guide, the corpus of British mythology can seem impenetrable. Taking advantage of the latest research, Fee and Leeming employ a unique comparative approach to map the origins and development of one of the richest folkloric traditions. Copiously illustrated with excerpts in translation from the original sources,Gods, Heroes, and Kings provides a fascinating and accessible new perspective on the history of British mythology. [From the publisher]https://cupola.gettysburg.edu/books/1066/thumbnail.jp
Harmonic Superspaces in Low Dimensions
Harmonic superspaces for spacetimes of dimension are constructed.
Some applications are given.Comment: 16, kcl-th-94-15. Two further references have been added (12 and 13)
and a few typographical errors have been correcte
Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients
During cancer progression, the homeostasis of the extracellular matrix becomes imbalanced with an excessive collagen remodeling by matrix metalloproteinases. As a consequence, small protein fragments of degraded collagens are released into the circulation. We have investigated the potential of protein fragments of collagen type I, III and IV as novel biomarkers for colorectal cancer. Specific fragments of degraded type I, III and IV collagen (C1M, C3M, C4M) and type III collagen formation (Pro-C3) were assessed in serum from colorectal cancer patients, subjects with adenomas and matched healthy controls using well-characterized and validated ELISAs. Serum levels of the biomarkers were significantly elevated in colorectal cancer patients compared to subjects with adenomas (C1M, Pro-C3, C3M) and controls (C1M, Pro-C3). When patients were stratified according to their tumour stage, all four biomarkers were able to differentiate stage IV metastatic patients from all other stages. Combination of all markers with age and gender in a logistic regression model discriminated between metastatic and non-metastatic patients with an AUROC of 0.80. The data suggest that the levels of these collagen remodeling biomarkers may be a measure of tumour activity and invasiveness and may provide new clinical tools for monitoring of patients with advanced stage colorectal cancer
Gammaherpesvirus infection modulates the temporal and spatial expression of SCGB1A1 (CCSP) and BPIFA1 (SPLUNC1) in the respiratory tract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection
Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling
BACKGROUND: During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for antibody generation and developed an ELISA assay (EL-NE) for the quantification of NE-degraded elastin. METHODS: Monoclonal antibodies were developed against 10 NE-specific cleavage sites on elastin. One EL-NE assay was tested for analyte stability, linearity and intra- and inter-assay variation. The NE specificity was demonstrated using elastin cleaved in vitro with matrix metalloproteinases (MMPs), cathepsin G (CatG), NE and intact elastin. Clinical relevance was assessed by measuring levels of NE-generated elastin fragments in serum of patients diagnosed with idiopathic pulmonary fibrosis (IPF, n = 10) or lung cancer (n = 40). RESULTS: Analyte recovery of EL-NE for human serum was between 85% and 104%, the analyte was stable for four freeze/thaw cycles and after 24 h storage at 4°C. EL-NE was specific for NE-degraded elastin. Levels of NE-generated elastin fragments for elastin incubated in the presence of NE were 900% to 4700% higher than those seen with CatG or MMP incubation or in intact elastin. Serum levels of NE-generated elastin fragments were significantly increased in patients with IPF (137%, p = 0.002) and in patients with lung cancer (510%, p < 0.001) compared with age- and sex-matched controls. CONCLUSIONS: The EL-NE assay was specific for NE-degraded elastin. The EL-NE assay was able to specifically quantify NE-degraded elastin in serum. Serum levels of NE-degraded elastin might be used to detect excessive lung tissue degradation in lung cancer and IPF. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12890-015-0048-5) contains supplementary material, which is available to authorized users
Protonation Isomers of Highly Charged Protein Ions Can Be Separated in FAIMS-MS
High-field asymmetric waveform ion mobility spectrometry-mass spectrometry (FAIMS-MS) can resolve over an order of magnitude more conformers for a given protein ion than alternative methods. Such an expansion in separation space results, in part, from protein ions with masses of \u3e29 kDa undergoing dipole alignment in the high electric field of FAIMS, and the resolution of ions that adopt pendular vs free rotor states. In this study, FAIMS-MS, collision-induced dissociation (CID), and travelling wave (TW) IMS-MS were used to investigate the pendular and free rotor states of protonated carbonic anhydrase II (CAII, 29 kDa). The electrospray ionization additive 1,2-butylene carbonate was used to increase protein charge states and ensure extended ion conformations were formed. For relatively high charge states in which dipole alignment occurs (30e38þ), FAIMS-MS can baseline resolve the isobaric pendular and free rotor ion populations. For TWIMS-MS, these same charge states resulted in monomodal arrival time distributions with collision cross sections corresponding to highly extended ion conformations. Interestingly, CID of FAIMS-selected pendular and free rotor ion populations resulted in significantly different frag-mentation patterns. For example, CID of the dipole aligned CAII 37þ resulted in cleavages C-terminal to residue 183, 192 and 196, whereas cleavage sites for the free rotor population occurred near residues 12 and 238. Given that the cleavage sites are ’directed’ by protonation sites in the CID of protein ions, and highly charged protein ions adopt extended conformations with the same or very similar collision cross sections, these results indicate that the pendular and free rotor populations separated in FAIMS can be attributed to protonation isomers. Moreover, the extent of protein ion charging in FAIMS-MS decreased substantially as the carrier gas flow rate decreased, indicating that ion charging in FAIMS-MS can be limited by proton-transfer reactions. Given that the total mass of proton charge carriers corresponds to less than 0.2% the mass of CAII, we anticipate that FAIMS-MS can be used to separate intact isobaric proteoforms with masses of at least ~29 kDa that result from alternative sites of post-translational modifications
An index to track the ecological effects of drought development and recovery on riverine invertebrate communities
© 2017 Elsevier Ltd In rivers, the ecological effects of drought typically result in gradual adjustments of invertebrate community structure and functioning, punctuated by sudden changes as key habitats, such as wetted channel margins, become dewatered and dry. This paper outlines the development and application of a new index (Drought Effect of Habitat Loss on Invertebrates – DEHLI) to quantify the effects of drought on instream macroinvertebrate communities by assigning weights to taxa on the basis of their likely association with key stages of channel drying. Two case studies are presented, in which the DEHLI index illustrates the ecological development of drought conditions and subsequent recovery. These examples demonstrate persistent drought effects months or several years after river flows recovered. Results derived using DEHLI are compared with an established macroinvertebrate flow velocity-reactive index (Lotic-invertebrate Index for Flow Evaluation – LIFE score) and demonstrates its greater sensitivity to drought conditions. Data from a number of rivers in south east England were used to calibrate a statistical model, which was then used to examine the response of DEHLI and LIFE to a hypothetical multi-year drought. This demonstrated a difference in response between sampling seasons, with the spring model indicating a lagged response due to delayed recolonisation and the autumn model differentiating habitat loss and flow velocity-driven responses. The application of DEHLI and the principles which underlie it allow the effects of drought on instream habitats and invertebrates associated with short or long term weather patterns to be monitored, whilst also allowing the identification of specific locations where intervention via river restoration, or revision of existing abstraction licensing, may be required to increase resilience to the effect of anthropogenic activities exacerbated by climate change
Accelerated extracellular matrix turnover during exacerbations of COPD
BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD) contribute significantly to disease progression. However, the effect on tissue structure and turnover is not well described. There is an urgent clinical need for biomarkers of disease activity associated with disease progression. Extracellular matrix (ECM) turnover reflects activity in tissues and consequently assessment of ECM turnover may serve as biomarkers of disease activity. We hypothesized that the turnover of lung ECM proteins were altered during exacerbations of COPD. METHODS: 69 patients with COPD hospitalised for an exacerbation were recruited at admission and returned for a 4 weeks follow-up. Competitive ELISAs measuring circulating protein fragments in serum or plasma assessed the formation and degradation of collagen types III (Pro-C3 and C3M, respectively), IV (P4NP 7S and C4M, respectively), and VI (Pro-C6 and C6M, respectively), and degradation of elastin (ELM7 and EL-NE) and versican (VCANM). RESULTS: Circulating levels of C3M, C4M, C6M, ELM7, and EL-NE were elevated during an exacerbation of COPD as compared to follow-up (all P <0.0001), while VCANM levels were decreased (P <0.0001). Pro-C6 levels were decreased and P4NP 7S levels were elevated during exacerbation (P <0.0001). Pro-C3 levels were unchanged. At time of exacerbation, degradation/formation ratios were increased for collagen types III and VI and decreased for collagen type IV. CONCLUSIONS: Exacerbations of COPD resulted in elevated levels of circulating fragments of structural proteins, which may serve as markers of disease activity. This suggests that patients with COPD have accelerated ECM turnover during exacerbations which may be related to disease progression
- …