128 research outputs found

    Phase behaviour of dehydrated phosphatidylcholines

    Get PDF
    Dehydrated DLPC, DMPC, DPPC and DSPC have been characterised at temperatures below the diacyl carbon chain-melting transition (Tm), using DSC. For the first time, the existence of pre-Tm transition processes, which are, usually, only observed in the colloidal/liposomal state of saturated phospholipids have been detected for the dehydrated phosphatidylcholines. Temperature modulated differential scanning calorimetry (TMDSC) was used to characterize the several complex, overlapping pre-Tm transition processes. Kinetic studies of the chain-melting (Tm) transition show the activation energy dependence on α (conversion rate) i.e. activation energy decreases as the transition progresses, pointing to the importance of initial cooperative (intra- and inter-molecular) mobility. Furthermore the activation energy increases with increase in diacyl chain length of the phosphatidylcholines which supports the finding that greater molecular interactions of the polymer chain and its head groups in the dehydrated solid state lead to enhanced stability of dehydrated phosphatidylcholines

    An AFM study of solid-phase bilayers of unsaturated PC lipids and the lateral distribution of the transmembrane model peptide WALP23 in these bilayers

    Get PDF
    An altered lipid packing can have a large influence on the properties of the membrane and the lateral distribution of proteins and/or peptides that are associated with the bilayer. Here, it is shown by contact-mode atomic force microscopy that the surface topography of solid-phase bilayers of PC lipids with an unsaturated cis bond in their acyl chains shows surfaces with a large number of line-type packing defects, in contrast to the much smoother surfaces observed for saturated PC lipids. Di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC (POPC) were used. Next, the influence of an altered lipid environment on the lateral distribution of the single α-helical model peptide WALP23 was studied by incorporating the peptide in the bilayers of di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC unsaturated lipids. The presence of WALP23 leads to an increase in the number of packing defects but does not lead to the formation of the striated domains that were previously observed in bilayers of saturated PC lipids and WALP. This is ascribed to the less efficient lateral lipid packing of the unsaturated lipids, while the increase in packing defects is probably an indirect effect of the peptide. Finally, the fact that an altered lipid packing affects the distribution of WALP23 is also confirmed in an additional experiment where the solvent TFE (2,2,2-trifluorethanol) is added to bilayers of di-16:0-PC/WALP23. At 3.5 vol% TFE, the previous striated ordering of the peptide is abolished and replaced by loose lines

    Coupling Phase Behavior of Fatty Acid Containing Membranes to Membrane Bio-Mechanics

    Get PDF
    Biological membranes constantly modulate their fluidity for proper functioning of the cell. Modulation of membrane properties via regulation of fatty acid composition has gained a renewed interest owing to its relevance in endocytosis, endoplasmic reticulum membrane homeostasis, and adaptation mechanisms in the deep sea. Endowed with significant degrees of freedom, the presence of free fatty acids can alter the curvature of membranes which in turn can alter the response of curvature sensing proteins, thus defining adaptive ways to reconfigure membranes. Most significantly, recent experiments demonstrated that polyunsaturated lipids facilitate membrane bending and fission by endocytic proteins – the first step in the biogenesis of synaptic vesicles. Despite the vital roles of fatty acids, a systematic study relating the interactions between fatty acids and membrane and the consequent effect on the bio-mechanics of membranes under the influence of fatty acids has been sparse. Of specific interest is the vast disparity in the properties of cis and trans fatty acids, that only differ in the orientation of the double bond and yet have entirely unique and opposing chemical properties. Here we demonstrate a combined X-ray diffraction and membrane fluctuation analysis method to couple the structural properties to the biophysical properties of fatty acid-laden membranes to address current gaps in our understanding. By systematically doping pure dioleoyl phosphatidylcholine (DOPC) membranes with cis fatty acid and trans fatty acid we demonstrate that the presence of fatty acids doesn’t always fluidize the membrane. Rather, an intricate balance between the curvature, molecular interactions, as well as the amount of specific fatty acid dictates the fluidity of membranes. Lower concentrations are dominated by the nature of interactions between the phospholipid and the fatty acids. Trans fatty acid increases the rigidity while decreasing the area per lipid similar to the properties depicted by the addition of saturated fatty acids to lipidic membranes. Cis fatty acid however displays the accepted view of having a fluidizing effect at small concentrations. At higher concentrations curvature frustration dominates, leading to increased rigidity irrespective of the type of fatty acid. These results are consistent with theoretical predictions as detailed in the manuscript

    The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes

    Get PDF
    A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent) features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (). Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC) in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids); this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities

    Fructan and its relationship to abiotic stress tolerance in plants

    Get PDF
    Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation

    Synthesis and Characterization of Potential Drug Delivery Systems using Nonionic Surfactant “Niosome”

    Get PDF
    Niosomes are synthetic microscopic vesicles consisting of an aqueous core enclosed in a bilayer consisting of cholesterol and one or more nonionic surfactants. They are made of biocompatible, biodegradable, non-toxic, non-immunogenic and non-carcinogenic agents which form closed spherical structures (self assembly vesicles) upon hydration. With high resistance to hydrolytic degradation, niosomes are capable of entrapping many kinds of soluble drugs while exhibiting greater vesicle stability and longer shelf life. In this work, a potential drug delivery system has been designed, synthesized and characterized. For the synthesis of niosomes, a hydration process was developed with varying design parameters such as mass per batch, angle of evaporation, rotation speed of vacuum rotary evaporator and nitrogen flowrate to produce uniform thin film in 50 ml round bottom flask. The rehydration process was developed by varying the choice of solvents (H2O, phosphate buffer solution (PBS) and PBS/5(6)-carboxyfluorescein (CF) as a drug model) and hydrating temperature of below and above gel transition temperature. Lastly, a sonication process to produce unilamellar vesicles was partially optimized based on the particle distribution and the number of vesicles formed with sonication time. As a result of this process, unilamellar and multilamellar vesicles were formed with the combination of different nonionic surfactants (sorbitan monostearate-Span 60, sorbitan monopalmitate-Span40 and sorbitan monolaurate-Span20), cholesterol and an electrostatic stabilizer (dicetyl phosphate). The vesicles were examined using light scattering optical microscopy and UV microscopy. Optical sensing technology (Particle Sizing System) is used to determine the vesicles\u27 size distribution. Gel exclusion chromatography (GEC) is discussed as a method to separate unencapsulated CF while retaining vesicle integrity. Particle Sizing System and luminescence spectrophotometer were used to determine CF encapsulation percentage and leakage. Result: Span 20, Span 40 and Span 60/Niosomes were made with mean particle size of 0.95-0.99 micro (mu)m. Typical concentrations of vesicle per ml/per mass of surfactant used were in the range of 1.46-1.79x108 . Typical encapsulation efficiencies were in the range of 48.8-62.9% for all three Span/Niosome systems. Niosomes were found to be stable for 9 days. The largest vesicles were observed with Span 60 with highest entrapment efficiency as compared to Span 20 and Span 40

    Interactions of fatty acids with phosphatidylethanolamine membranes: X-ray diffraction and molecular dynamics studies

    No full text
    An experimental and theoretical study on 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes containing fatty acids (FAs) was performed by means of X-ray diffraction analysis and molecular dynamics (MD) simulations. The study was aimed at understanding the interactions of several structurally related FAs with biomembranes, which is necessary for further rational lipid drug design in membrane-lipid therapy. The main effect of FAs was to promote the formation of a H(II) phase, despite a stabilization of the coexisting L(alpha) + H(II) phases. Derivatives of OA exhibited a specific density profile in the direction perpendicular to the bilayer that reflects differences in the relative localization of the carboxylate group within the polar region of the membrane as well as in the degree of membrane penetration of the FA acyl chain. Hydroxyl and methyl substituents at carbon-2 in the FA acyl chain were identified as effective modulators of the position of carboxylate group in the lipid bilayer. Our data highlight the specific potential of each FA in modulating the membrane structure properties
    corecore