728 research outputs found
Ramsey's Method of Separated Oscillating Fields and its Application to Gravitationally Induced Quantum Phaseshifts
We propose to apply Ramsey's method of separated oscillating fields to the
spectroscopy of the quantum states in the gravity potential above a vertical
mirror. This method allows a precise measurement of quantum mechanical
phaseshifts of a Schr\"odinger wave packet bouncing off a hard surface in the
gravitational field of the earth. Measurements with ultra-cold neutrons will
offer a sensitivity to Newton's law or hypothetical short-ranged interactions,
which is about 21 orders of magnitude below the energy scale of
electromagnetism.Comment: 7 pages, 6 figure
Neural NILM: Deep Neural Networks Applied to Energy Disaggregation
Energy disaggregation estimates appliance-by-appliance electricity
consumption from a single meter that measures the whole home's electricity
demand. Recently, deep neural networks have driven remarkable improvements in
classification performance in neighbouring machine learning fields such as
image classification and automatic speech recognition. In this paper, we adapt
three deep neural network architectures to energy disaggregation: 1) a form of
recurrent neural network called `long short-term memory' (LSTM); 2) denoising
autoencoders; and 3) a network which regresses the start time, end time and
average power demand of each appliance activation. We use seven metrics to test
the performance of these algorithms on real aggregate power data from five
appliances. Tests are performed against a house not seen during training and
against houses seen during training. We find that all three neural nets achieve
better F1 scores (averaged over all five appliances) than either combinatorial
optimisation or factorial hidden Markov models and that our neural net
algorithms generalise well to an unseen house.Comment: To appear in ACM BuildSys'15, November 4--5, 2015, Seou
Multi-Channel Inverse Scattering Problem on the Line: Thresholds and Bound States
We consider the multi-channel inverse scattering problem in one-dimension in
the presence of thresholds and bound states for a potential of finite support.
Utilizing the Levin representation, we derive the general Marchenko integral
equation for N-coupled channels and show that, unlike to the case of the radial
inverse scattering problem, the information on the bound state energies and
asymptotic normalization constants can be inferred from the reflection
coefficient matrix alone. Thus, given this matrix, the Marchenko inverse
scattering procedure can provide us with a unique multi-channel potential. The
relationship to supersymmetric partner potentials as well as possible
applications are discussed. The integral equation has been implemented
numerically and applied to several schematic examples showing the
characteristic features of multi-channel systems. A possible application of the
formalism to technological problems is briefly discussed.Comment: 19 pages, 5 figure
Minimising medicine use in organic dairy herds through animal health and welfare planning
Livestock is important in many organic farming systems, and it is an explicit goal to ensure high levels of animal health and welfare (AHW) through good management. This will lead to reduced medicine use and better quality of animal products. In two EU network projects NAHWOA & SAFO it was concluded that this is not guaranteed merely by following organic standards. Both networks recommended implementation of individual animal health plans to stimulate organic farmers to improve AHW. These plans should include a systematic evaluation of AHW and be implemented through dialogue with each farmer in order to identify goals and plan improvements. 15 research institutions in 8 European countries are involved in the proposed project with the main objective to minimise medicine use in organic dairy herds through active and well planned AHW promotion and disease prevention. The project consists of 5 work packages, 4 of which comprise research activities building on current research projects, new applications across borders, exchange of knowledge, results and conclusions between participating countries, and adopting them to widely different contexts. International and national workshops facilitate this exchange. Focus areas are animal health planning, AHW assessment using animal based parameters and development of advisory systems and farmer groups. Epidemiological analyses of the effect on AHW from reduced medicine use and herd improvements are planned in all participating countries
Dirac-Foldy term and the electromagnetic polarizability of the neutron
We reconsider the Dirac-Foldy contribution to the neutron electric
polarizability. Using a Dirac equation approach to neutron-nucleus scattering,
we review the definitions of Compton continuum (), classical
static (), and Schr\"{o}dinger () polarizabilities
and discuss in some detail their relationship. The latter is the
value of the neutron electric polarizability as obtained from an analysis using
the Schr\"{o}dinger equation. We find in particular , where is the magnitude of the magnetic moment
of a neutron of mass . However, we argue that the static polarizability
is correctly defined in the rest frame of the particle, leading to
the conclusion that twice the Dirac-Foldy contribution should be added to
to obtain the static polarizability .Comment: 11 pages, RevTeX, to appear in Physical Review
BCI-Based Navigation in Virtual and Real Environments
A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de AndalucĂa (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF
Neutron charge radius and the Dirac equation
We consider the Dirac equation for a finite-size neutron in an external
electric field. We explicitly incorporate Dirac-Pauli form factors into the
Dirac equation. After a non-relativistic reduction, the Darwin-Foldy term is
cancelled by a contribution from the Dirac form factor, so that the only
coefficient of the external field charge density is , i. e. the
root mean square radius associated with the electric Sachs form factor . Our
result is similar to a recent result of Isgur, and reconciles two apparently
conflicting viewpoints about the use of the Dirac equation for the description
of nucleons.Comment: 7 pages, no figures, to appear in Physical Review
Differential contributions of subthalamic beta rhythms and 1/f broadband activity to motor symptoms in Parkinson's disease.
Excessive beta oscillatory activity in the subthalamic nucleus (STN) is linked to Parkinson's Disease (PD) motor symptoms. However, previous works have been inconsistent regarding the functional role of beta activity in untreated Parkinsonian states, questioning such role. We hypothesized that this inconsistency is due to the influence of electrophysiological broadband activity -a neurophysiological indicator of synaptic excitation/inhibition ratio- that could confound measurements of beta activity in STN recordings. Here we propose a data-driven, automatic and individualized mathematical model that disentangles beta activity and 1/f broadband activity in the STN power spectrum, and investigate the link between these individual components and motor symptoms in thirteen Parkinsonian patients. We show, using both modeled and actual data, how beta oscillatory activity significantly correlates with motor symptoms (bradykinesia and rigidity) only when broadband activity is not considered in the biomarker estimations, providing solid evidence that oscillatory beta activity does correlate with motor symptoms in untreated PD states as well as the significant impact of broadband activity. These findings emphasize the importance of data-driven models and the identification of better biomarkers for characterizing symptom severity and closed-loop applications
Present Status and Future Programs of the n_TOF Experiment
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
- âŠ