3,785 research outputs found

    Duality and Non-linear Response for Quantum Hall Systems

    Get PDF
    We derive the implications of particle-vortex duality for the electromagnetic response of Quantum Hall systems beyond the linear-response regime. This provides a first theoretical explanation of the remarkable duality which has been observed in the nonlinear regime for the electromagnetic response of Quantum Hall systems.Comment: 7 pages, 1 figure, typeset in LaTe

    A possible minimal gauge-Higgs unification

    Full text link
    A possible minimal model of the gauge-Higgs unification based on the higher dimensional spacetime M^4 X (S^1/Z_2) and the bulk gauge symmetry SU(3)_C X SU(3)_W X U(1)_X is constructed in some details. We argue that the Weinberg angle and the electromagnetic current can be correctly identified if one introduces the extra U(1)_X above and a bulk scalar triplet. The VEV of this scalar as well as the orbifold boundary conditions will break the bulk gauge symmetry down to that of the standard model. A new neutral zero-mode gauge boson Z' exists that gains mass via this VEV. We propose a simple fermion content that is free from all the anomalies when the extra brane-localized chiral fermions are taken into account as well. The issues on recovering a standard model chiral-fermion spectrum with the masses and flavor mixing are also discussed, where we need to introduce the two other brane scalars which also contribute to the Z' mass in the similar way as the scalar triplet. The neutrinos can get small masses via a type I seesaw mechanism. In this model, the mass of the Z' boson and the compactification scale are very constrained as respectively given in the ranges: 2.7 TeV < m_Z' < 13.6 TeV and 40 TeV < 1/R < 200 TeV.Comment: 20 pages, revised versio

    Anomalies on orbifolds with gauge symmetry breaking

    Get PDF
    We embed two 4D chiral multiplets of opposite representations in the 5D N=2 SU(N+K)SU(N+K) gauge theory compactified on an orbifold S1/(Z2×Z2)S^1/(Z_2\times Z'_2). There are two types of orbifold boundary conditions in the extra dimension to obtain the 4D N=1 SU(N)×SU(K)×U(1)SU(N)\times SU(K)\times U(1) gauge theory from the bulk: in Type I, one has the bulk gauge group at y=0y=0 and the unbroken gauge group at y=πR/2y=\pi R/2 while in Type II, one has the unbroken gauge group at both fixed points. In both types of orbifold boundary conditions, we consider the zero mode(s) as coming from a bulk (K+N)(K+N)-plet and brane fields at the fixed point(s) with the unbroken gauge group. We check the consistency of this embedding of fields by the localized anomalies and the localized FI terms. We show that the localized anomalies in Type I are cancelled exactly by the introduction of a bulk Chern-Simons term. On the other hand, in some class of Type II, the Chern-Simons term is not enough to cancel all localized anomalies even if they are globally vanishing. We also find that for the consistent embedding of brane fields, there appear only the localized log FI terms at the fixed point(s) with a U(1) factor.Comment: LaTeX file of 19 pages with no figure, published versio

    Intra-molecular coupling as a mechanism for a liquid-liquid phase transition

    Get PDF
    We study a model for water with a tunable intra-molecular interaction JσJ_\sigma, using mean field theory and off-lattice Monte Carlo simulations. For all Jσ0J_\sigma\geq 0, the model displays a temperature of maximum density.For a finite intra-molecular interaction Jσ>0J_\sigma > 0,our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely pre-empted by inevitable freezing. For J=0 the liquid-liquid critical point disappears at T=0.Comment: 8 pages, 4 figure

    Supersymmetric codimension-two branes and U(1)_R mediation in 6D gauged supergravity

    Full text link
    We construct a consistent supersymmetric action for brane chiral and vector multiplets in a six-dimensional chiral gauged supergravity. A nonzero brane tension can be accommodated by allowing for a brane-localized Fayet-Iliopoulos term proportional to the brane tension. When the brane chiral multiplet is charged under the bulk U(1)_R, we obtain a nontrivial coupling to the extra component of the U(1)_R gauge field strength as well as a singular scalar self-interaction term. Dimensionally reducing to 4D on a football supersymmetric solution, we discuss the implication of such interactions for obtaining the U(1)_R D-term in the 4D effective supergravity. By assuming the bulk gaugino condensates and nonzero brane F- and/or D-term for the uplifting potential, we have all the moduli stabilized with a vanishing cosmological constant. The brane scalar with nonzero R charge then gets a soft mass of order the gravitino mass. The overall sign of the soft mass squared depends on the sign of the R charge as well as whether the brane F- or D-term dominates.Comment: 28 pages, no figures, version to appear in JHE

    Suppression of Superconducting Critical Current Density by Small Flux Jumps in MgB2MgB_2 Thin Films

    Full text link
    By doing magnetization measurements during magnetic field sweeps on thin films of the new superconductor MgB2MgB_2, it is found that in a low temperature and low field region small flux jumps are taking place. This effect strongly suppresses the central magnetization peak leading to reduced nominal superconducting critical current density at low temperatures. A borderline for this effect to occur is determined on the field-temperature (H-T) phase diagram. It is suggested that the small size of the flux jumps in films is due to the higher density of small defects and the relatively easy thermal diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200

    Enhanced stability of the square lattice of a classical bilayer Wigner crystal

    Full text link
    The stability and melting transition of a single layer and a bilayer crystal consisting of charged particles interacting through a Coulomb or a screened Coulomb potential is studied using the Monte-Carlo technique. A new melting criterion is formulated which we show to be universal for bilayer as well as for single layer crystals in the case of (screened) Coulomb, Lennard--Jones and 1/r^{12} repulsive inter-particle interactions. The melting temperature for the five different lattice structures of the bilayer Wigner crystal is obtained, and a phase diagram is constructed as a function of the interlayer distance. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures. This is a consequence of the specific topology of the defects which are created with increasing temperature and which have a larger energy as compared to the defects in e.g. a hexagonal lattice.Comment: Accepted for publication in Physical Review

    Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations

    Get PDF
    We investigate the solvent-accessible area method by means of Metropolis simulations of the brain peptide Met-Enkephalin at 300K K. For the energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The simulations are compared with one another, with simulations with a distance dependent electrostatic permittivity ϵ(r)\epsilon (r), and with vacuum simulations (ϵ=2\epsilon =2). Parallel tempering and the biased Metropolis techniques RM1_1 are employed and their performance is evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other systems selected configurations are minimized in search of the global energy minima, which are found for the vacuum and the ϵ(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, we find three ASP sets for which the autocorrelations at 300 K are considerably smaller than for vacuum simulations.Comment: 10 pages and 8 figure

    Fermi surface instabilities at finite Temperature

    Get PDF
    We present a new method to detect Fermi surface instabilities for interacting systems at finite temperature. We first apply it to a list of cases studied previously, recovering already known results in a very economic way, and obtaining most of the information on the phase diagram analytically. As an example, in the continuum limit we obtain the critical temperature as an implicit function of the magnetic field and the chemical potential Tc(μ,h)T_c(\mu,h). By applying the method to a model proposed to describe reentrant behavior in Sr3Ru2O7Sr_3Ru_2O_7, we reproduce the phase diagram obtained experimentally and show the presence of a non-Fermi Liquid region at temperatures above the nematic phase.Comment: 10 pages, 10 figure

    A Vector Non-abelian Chern-Simons Duality

    Get PDF
    Abelian Chern-Simons gauge theory is known to possess a `SS-self-dual' action where its coupling constant kk is inverted {\it i.e.} k1kk \leftrightarrow {1 \over k}. Here a vector non-abelian duality is found in the pure non-abelian Chern-Simons action at the classical level. The dimensional reduction of the dual Chern-Simons action to two-dimensions constitutes a dual Wess-Zumino-Witten action already given in the literature.Comment: 14+1 pages, LaTeX file, no figures, version to appear in Phys. Rev
    corecore