4,684 research outputs found

    Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

    Get PDF
    Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.National Science Foundation (U.S.) (MIT Center for Bits and Atoms (NSF CCR0122419))Massachusetts Institute of Technology. Media LaboratoryKorea Foundation for Advanced StudiesSamsung Electronics Co. (research internship)Harvard University. Society of FellowsWallace H. Coulter Foundation (Early Career Award)Brain & Behavior Research Foundation (Young Investigator Award)National Science Foundation (U.S.)National Institutes of Health (U.S.) (Director’s New Innovator Award

    A Regularized Graph Layout Framework for Dynamic Network Visualization

    Full text link
    Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material (animations and MATLAB toolbox) available at http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201

    Measuring stress in medical education: validation of the Korean version of the higher education stress inventory with medical students

    Get PDF
    Background: Medical students face a variety of stressors associated with their education; if not promptly identified and adequately dealt with, it may bring about several negative consequences in terms of mental health and academic performance. This study examined psychometric properties of the Korean version of the Higher Education Stress Inventory (K-HESI). Methods: The reliability and validity of the K-HESI were examined in a large scale multi-site survey involving 7110 medical students. The K-HESI, Beck Depression Inventory (BDI) and questions regarding quality of life (QOL) and self-rated physical health (SPH) were administered. Results: Exploratory factor analysis of the K-HESI identified seven factors: Low commitment; financial concerns; teacher-student relationship; worries about future profession; non-supportive climate; workload; and dissatisfaction with education. A subsequent confirmatory factor analysis supported the 7-factor model. Internal consistency of the K-HESI was satisfactory (Cronbach&apos;s a = .78). Convergent validity was demonstrated by its positive association with the BDI. Known group validity was supported by the K-HESI&apos;s ability to detect significant differences on the overall and subscale scores of K-HESI according to different levels of QOL and SPH. Conclusions: The K-HESI is a psychometrically valid tool that comprehensively assesses various relevant stressors related to medical education. Evidence-based stress management in medical education empirically guided by the regular assessment of stress using reliable and valid measure is warranted.open

    Experiments in lifelog organisation and retrieval at NTCIR

    Get PDF
    Lifelogging can be described as the process by which individuals use various software and hardware devices to gather large archives of multimodal personal data from multiple sources and store them in a personal data archive, called a lifelog. The Lifelog task at NTCIR was a comparative benchmarking exercise with the aim of encouraging research into the organisation and retrieval of data from multimodal lifelogs. The Lifelog task ran for over 4 years from NTCIR-12 until NTCIR-14 (2015.02–2019.06); it supported participants to submit to five subtasks, each tackling a different challenge related to lifelog retrieval. In this chapter, a motivation is given for the Lifelog task and a review of progress since NTCIR-12 is presented. Finally, the lessons learned and challenges within the domain of lifelog retrieval are presented

    Improving population-level refractive error monitoring via mixture distributions

    Full text link
    Introduction: Sampling and describing the distribution of refractive error in populations is critical to understanding eye care needs, refractive differences between groups and factors affecting refractive development. We investigated the ability of mixture models to describe refractive error distributions. Methods: We used key informants to identify raw refractive error datasets and a systematic search strategy to identify published binned datasets of community-representative refractive error. Mixture models combine various component distributions via weighting to describe an observed distribution. We modelled raw refractive error data with a single-Gaussian (normal) distribution, mixtures of two to six Gaussian distributions and an additive model of an exponential and Gaussian (ex-Gaussian) distribution. We tested the relative fitting accuracy of each method via Bayesian Information Criterion (BIC) and then compared the ability of selected models to predict the observed prevalence of refractive error across a range of cut-points for both the raw and binned refractive data. Results: We obtained large raw refractive error datasets from the United States and Korea. The ability of our models to fit the data improved significantly from a single-Gaussian to a two-Gaussian-component additive model and then remained stable with ≥3-Gaussian-component mixture models. Means and standard deviations for BIC relative to 1 for the single-Gaussian model, where lower is better, were 0.89 ± 0.05, 0.88 ± 0.06, 0.89 ± 0.06, 0.89 ± 0.06 and 0.90 ± 0.06 for two-, three-, four-, five- and six-Gaussian-component models, respectively, tested across US and Korean raw data grouped by age decade. Means and standard deviations for the difference between observed and model-based estimates of refractive error prevalence across a range of cut-points for the raw data were −3.0% ± 6.3, 0.5% ± 1.9, 0.6% ± 1.5 and −1.8% ± 4.0 for one-, two- and three-Gaussian-component and ex-Gaussian models, respectively. Conclusions: Mixture models appear able to describe the population distribution of refractive error accurately, offering significant advantages over commonly quoted simple summary statistics such as mean, standard deviation and prevalence

    The Regge Limit for Green Functions in Conformal Field Theory

    Full text link
    We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in arXiv:0801.3002, the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit defined here and previous work in CFT. Clarification of causal orderings in the limit. References adde

    Structural similarity assessment for drug sensitivity prediction in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to predict drug sensitivity in cancer is one of the exciting promises of pharmacogenomic research. Several groups have demonstrated the ability to predict drug sensitivity by integrating chemo-sensitivity data and associated gene expression measurements from large anti-cancer drug screens such as NCI-60. The general approach is based on comparing gene expression measurements from sensitive and resistant cancer cell lines and deriving drug sensitivity profiles consisting of lists of genes whose expression is predictive of response to a drug. Importantly, it has been shown that such profiles are generic and can be applied to cancer cell lines that are not part of the anti-cancer screen. However, one limitation is that the profiles can not be generated for untested drugs (i.e., drugs that are not part of an anti-cancer drug screen). In this work, we propose using an existing drug sensitivity profile for drug A as a substitute for an untested drug B given high structural similarities between drugs A and B.</p> <p>Results</p> <p>We first show that structural similarity between pairs of compounds in the NCI-60 dataset highly correlates with the similarity between their activities across the cancer cell lines. This result shows that structurally similar drugs can be expected to have a similar effect on cancer cell lines. We next set out to test our hypothesis that we can use existing drug sensitivity profiles as substitute profiles for untested drugs. In a cross-validation experiment, we found that the use of substitute profiles is possible without a significant loss of prediction accuracy if the substitute profile was generated from a compound with high structural similarity to the untested compound.</p> <p>Conclusion</p> <p>Anti-cancer drug screens are a valuable resource for generating omics-based drug sensitivity profiles. We show that it is possible to extend the usefulness of existing screens to untested drugs by deriving substitute sensitivity profiles from structurally similar drugs part of the screen.</p

    Lumbar spinal stenosis treatment with aperius perclid interspinous system

    Get PDF
    The purpose of this study is to report clinical outcome and imaging changes of percutaneous Aperius stand-alone implant in patients with degenerative lumbar spinal stenosis and neurogenic intermittent claudication, which did not respond to conservative treatment.Between January 2008 and July 2010, 37 patients (20 males and 17 females) with mean age of 64.3 years underwent surgery for the onset of claudicatio spinalis with Aperius PercLID interspinous device (Medtronic). In all patients, the diagnosis was: foraminal stenosis, in one case (2.7 \%) it was associated to a degenerative anterior listhesis (I grade), in three cases (8.1 \%) it was associated to an intraforaminal disc herniation. The mean follow-up was of 18 months (range 2-35 months). The patients were evaluated through the Oswestry disability index, Zurich Claudication Questionnaire (ZCQ), VAS scales. In all cases were obtained preoperative and in postoperative radiographs and magnetic resonance imaging.The VAS score decreased significantly after surgery: the patients presented a mean VAS of seven preoperatively and two postoperatively (p < 0.001). The ZCQ score significantly decreased postoperatively, with an average reduction of 21.89 \% (p < 0.001). The ODI score as well showed a significant reduction postoperatively of an average 26.09 \% (p < 0.001).Despite of the brief follow up, the preliminary results are encouraging, showing a significantly decrease of the disability parameters, a marked improvement of the function with the vanishing of the claudicatio spinalis and the following increase of the free interval during the walk. Aperius PercLID system seems to offer an alternative to the traditional decompression surgery
    corecore