212 research outputs found

    Are Drug Companies Living Up to Their Human Rights Responsibilities? Moving Toward Assessment

    Get PDF
    As one viewpoint of three in the PLoS Medicine Debate on whether drug companies are living up to their human rights responsibilities, Sofia Gruskin and Zyde Raad argue that companies' actions to promote access to medicines, including their interactions with state and non-state actors, must be better monitored

    Spin Correlation in tt-bar Production from pp-bar Collisions at sqrt(s)=1.8 TeV

    Get PDF
    The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.Comment: Submitted to PRL, Added references, minor changes to tex

    Search for R-parity Violating Supersymmetry in Dimuon and Four-Jets Channel

    Get PDF
    We present results of a search for R-parity-violating decay of the neutralino chi_1^0, taken to be the Lightest Supersymmetric Particle. It is assumed that this decay proceeds through one of the lepton-number violating couplings lambda-prime_2jk (j=1,2; k=1,2,3). This search is based on 77.5 pb-1 of data, collected by the D0 experiment at the Fermilab Tevatron in ppbar collisions at a center of mass energy of 1.8 TeV in 1992-1995.Comment: 10 pages, 3 figure

    Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics

    Get PDF
    Antisense oligonucleotides can be employed as a potential approach to effectively treat cancer. However, the inherent instability and inefficient systemic delivery methods for antisense therapeutics remain major challenges to their clinical application. Here, we present a polymerized oligonucleotides (ODNs) that self-assemble during their formation through an enzymatic elongation method (rolling circle replication) to generate a composite nucleic acid/magnesium pyrophosphate sponge-like microstructure, or DNA microsponge, yielding high molecular weight nucleic acid product. In addition, this densely packed ODN microsponge structure can be further condensed to generate polyelectrolyte complexes with a favorable size for cellular uptake by displacing magnesium pyrophosphate crystals from the microsponge structure. Additional layers are applied to generate a blood-stable and multifunctional nanoparticle via the layer-by-layer (LbL) assembly technique. By taking advantage of DNA nanotechnology and LbL assembly, functionalized DNA nanostructures were utilized to provide extremely high numbers of repeated ODN copies for efficient antisense therapy. Moreover, we show that this formulation significantly improves nucleic acid drug/carrier stability during in vivo biodistribution. These polymeric ODN systems can be designed to serve as a potent means of delivering stable and large quantities of ODN therapeutics systemically for cancer treatment to tumor cells at significantly lower toxicity than traditional synthetic vectors, thus enabling a therapeutic window suitable for clinical translation.United States. Dept. of Defense. Ovarian Cancer Research Program (Teal Innovator Award Grant OC120504)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F32EB017614-01)National Science Foundation (U.S.). Graduate Research Fellowshi

    Search for New Physics Using Quaero: A General Interface to D0 Event Data

    Get PDF
    We describe Quaero, a method that i) enables the automatic optimization of searches for physics beyond the standard model, and ii) provides a mechanism for making high energy collider data generally available. We apply Quaero to searches for standard model WW, ZZ, and ttbar production, and to searches for these objects produced through a new heavy resonance. Through this interface, we make three data sets collected by the D0 experiment at sqrt(s)=1.8 TeV publicly available.Comment: 7 pages, submitted to Physical Review Letter

    Improved W boson mass measurement with the D0 detector

    Get PDF
    We have measured the W boson mass using the D0 detector and a data sample of 82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such 'edge' electrons have not been used in any previous D0 analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous D0 W boson mass measurements, we obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0 measurement is primarily due to the improved determination of the response parameters for non-edge electrons using the sample of Z bosons with non-edge and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
    corecore