2,925 research outputs found

    Shock Metamorphism in Impact Melt Rocks from the Gow Lake Impact Structure, Saskatchewan, Canada

    Get PDF
    Meteorite impact craters are the dominant surface feature on most terrestrial planetary bodies [1] and are gathering increased interest with the continued exploration of the Solar System. It is worth, then, taking a fresh look at impact craters on Earth, in particular those which have not yet been studied in great detail, like Gow Lake, in order to see if new techniques will shed light on some of the remaining questions about them

    Polarisation effects in optical microcoil resonators

    No full text
    Optical microcoil resonators (OMRs) fabricated by wrapping a microfibre around a rod to allow evanescent coupling between adjacent turns as in Fig 1. (a) have recently attracted much interest due to their high Q-factor and large extinction ratios resonances, low input and output coupling losses, large evanescent field and compactness [1,2], with applications such as sensing [3] and signal processing [4]. However, theoretical models published so far have neglected polarisation effects, and hence in order to develop a more detailed understanding we have modelled the OMR with polarisation-dependent coupled mode equations in the linear [5] and nonlinear regimes

    African mahogany (Khaya senegalensis) plantations in Australia - status, needs and progress

    Get PDF
    The Australian African mahogany estate comprises over 12,000 ha of industrial plantations, farm-forestry plots and trials, virtually all derived from Africa-sourced wild seed. However, the better trees have given high-value products such as veneers, high-grade boards and award-winning furniture. Collaborative conservation and improvement by the Northern Territory (NT) and Queensland governments since 2000 realised seed orchards, hedge gardens and genetic tests revealing promising clones and families. Private sector R&D since the mid 2000s includes silvicultural-management and wood studies, participatory testing of government material and establishing over 90 African provenances and many single-tree seedlots in multisite provenance and family trials. Recent, mainly public sector research included a 5-agency project of 2009-12 resulting in advanced propagation technologies and greater knowledge of biology, wood properties and processing. Operational priority in the short term should focus on developing seed production areas and ‘rolling front’ clonal seed orchards. R&D priorities should include: developing and implementing a collaborative improvement strategy based on pooled resources; developing non-destructive evaluation of select-tree wood properties, micropropagation (including field testing of material from this source) to ‘industry ready’ and a select-tree index; optimising seed production in orchards; advancing controlled pollination techniques; and maximising benefits from the progeny, clone and provenance trials. Australia leads the world in improvement and ex situ conservation of African mahogany based on the governments’ 13-year program and more recent industry inputs such that accumulated genetic resources total over 120 provenances and many families from 15 of the 19 African countries of its range. Having built valuable genetic resources, expertise, technologies and knowledge, the species is almost ‘industry ready’. The industry will benefit if it exploits the comparative advantage these assets provide. However the status of much of the diverse germplasm introduced since the mid 2000s is uncertain due to changes in ownership. Further, recent reductions of government investment in forestry R&D will be detrimental unless the industry fills the funding gaps. Expansion and sustainability of the embryonic industry must capitalise on past and current R&D, while initiating and sustaining critical new work through all-stakeholder collaboration

    MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels

    Get PDF
    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects

    Cluster Monte Carlo Simulations of the Nematic--Isotropic Transition

    Full text link
    We report the results of simulations of the Lebwohl-Lasher model of the nematic-isotropic transition using a new cluster Monte Carlo algorithm. The algorithm is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size, obeying finite size scaling for systems of size greater than 35. We thus obtain an estimate of the value of the transition temperature in the thermodynamic limit.Comment: 4 figure

    Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons

    Get PDF
    We study the effect on the cosmic microwave background (CMB) anisotropy and large scale structure (LSS) power spectrum of a scattering interaction between cold dark matter and baryons. This scattering alters the CMB anisotropy and LSS spectrum through momentum transfer between the cold dark matter particles and the baryons. We find that current CMB observations can put an upper limit on the scattering cross section which is comparable with or slightly stronger than previous disk heating constraints at masses greater than 1 GeV, and much stronger at smaller masses. When large-scale structure constraints are added to the CMB limits, our constraint is more stringent than this previous limit at all masses. In particular, a dark matter-baryon scattering cross section comparable to the ``Spergel-Steinhardt'' cross section is ruled out for dark matter mass greater than 1 GeV.Comment: 8 pages, 2 figures, use RevTeX4, submitted to PRD replaced with revised versio

    D/H and water sources in Tissint

    Get PDF
    No abstract available
    • …
    corecore