13,174 research outputs found

    Assessing Developmental Assessment in Community Colleges

    Get PDF
    Placement exams are high-stakes assessments that determine many students' college trajectories. The majority of community colleges use placement exams—most often the ACCUPLACER, developed by the College Board, or the COMPASS, developed by ACT, Inc.—to sort students into college-level or developmental education courses in math, reading, and sometimes writing. More than half of entering students at community colleges are placed into developmental education in at least one subject as a result. But the evidence on the predictive validity of these tests is not as strong as many might assume, given the stakes involved—and recent research fails to find evidence that the resulting placements into remediation improve student outcomes. While this has spurred debate about the content and delivery of remedial coursework, it is possible that the assessment process itself may be broken; the debate about remediation policy is incomplete without a fuller understanding of the role of assessment. This Brief examines the role of developmental assessment, the validity of the most common assessments currently in use, and emerging directions in assessment policy and practice. Alternative methods of assessment—particularly those involving multiple measures of student preparedness—seem to have the potential to improve student outcomes, but more research is needed to determine what type of change in assessment and placement policy might improve persistence and graduation rates. The Brief concludes with a discussion of implications for policy and research

    One-Loop Renormalization of Higher-Derivative 2D Dilaton Gravity

    Full text link
    A theory of higher-derivative 2D dilaton gravity which has its roots in the massive higher-spin mode dynamics of string theory is suggested. The divergences of the effective action to one-loop are calculated, both in the covariant and in the conformal gauge. Some technical problems which appear in the calculations are discussed. An interpretation of the theory as a particular D=2 higher-derivative σ\sigma-model is given. For a specific case of higher-derivative 2D dilaton gravity, which is one loop multiplicatively renormalizable, static configurations corresponding to black holes are shown to exist.Comment: 12 pages, LaTeX fil

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    Dielectrophoresis of nanocolloids: a molecular dynamics study

    Full text link
    Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform electric fields, has become an important tool for the transport, separation, and characterization of microparticles in biomedical and nanoelectronics research. In this article we present, to our knowledge, the first molecular dynamics simulations of DEP of nanometer-sized colloidal particles. We introduce a simplified model for polarizable nanoparticles, consisting of a large charged macroion and oppositely charged microions, in an explicit solvent. The model is then used to study DEP motion of the particle at different combinations of temperature and electric field strength. In accord with linear response theory, the particle drift velocities are shown to be proportional to the DEP force. Analysis of the colloid DEP mobility shows a clear time dependence, demonstrating the variation of friction under non-equilibrium. The time dependence of the mobility further results in an apparent weak variation of the DEP displacements with temperature

    Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation

    Get PDF
    The method of surface preparation on n-type GaAs, even with the presence of an amorphous-Si interfacial passivation layer, is shown to be a critical step in the removal of accumulation capacitance frequency dispersion. In situ deposition and analysis techniques were used to study different surface preparations, including NH4OH, Si-flux, and atomic hydrogen exposures, as well as Si passivation depositions prior to in situ atomic layer deposition of Al2O3. As–O bonding was removed and a bond conversion process with Si deposition is observed. The accumulation capacitance frequency dispersion was removed only when a Si interlayer and a specific surface clean were combined

    Psychometrics of new scales of parenting practices to encourage or discourage Hispanic preschool children's physical activity

    Get PDF
    Conference Theme: Promoting Healthy Eating and activity worldwidePoster - Personal and environmental determinants of physical activity in children and adolescents: abstract P077PURPOSE: Develop and assess the psychometrics of a new instrument for parenting practices (PP) that encourage or discourage physical activity (PA) in Hispanic preschool children. METHOD: Cross--‐sectional study of 240 Hispanic parents who reported their demographics and frequency of using PP that encourage (structure and encouragement) or discourage (promoting inactivity, psychological control, safety 
postprin

    Association of parenting practices to encourage or discourage physical activity with Hispanic preschool children's objectively measured physical activity

    Get PDF
    Oral Session - Determinants of physical activity in children and adolescents: no. O.002Conference Theme: Promoting Healthy Eating and Activity WorldwidePURPOSE: Assess the association of parenting practices (PP) to encourage or discourage physical activity (PA) with Hispanic 3-5 year old children’s objectively measured PA METHOD: Cross-sectional study of Hispanic parent-child dyads (n= 84) who reported their demographics and frequency of using PP that encourage (structure/encouragement) or discourage (promote inactive transport, promote screen time, psychological control, and safety concerns) child PA using verified scales. Children wore Actigraph GT3X accelerometers recording 15 second epochs for 7 days. Allowing for re-wears 
postprin

    GaAs interfacial self-cleaning by atomic layer deposition

    Get PDF
    The reduction and removal of surface oxides from GaAs substrates by atomic layer deposition (ALD) of Al2O3 and HfO2 are studied using in situ monochromatic x-ray photoelectron spectroscopy. Using the combination of in situ deposition and analysis techniques, the interfacial "self-cleaning" is shown to be oxidation state dependent as well as metal organic precursor dependent. Thermodynamics, charge balance, and oxygen coordination drive the removal of certain species of surface oxides while allowing others to remain. These factors suggest proper selection of surface treatments and ALD precursors can result in selective interfacial bonding arrangements

    Superdeformation in 198^{198}Po

    Full text link
    The 174^{174}Yb(29^{29}Si,5n) reaction at 148 MeV with thin targets was used to populate high-angular momentum states in 198^{198}Po. Resulting γ\gamma rays were observed with Gammasphere. A weakly-populated superdeformed band of 10 γ\gamma-ray transitions was found and has been assigned to 198^{198}Po. This is the first observation of a SD band in the A≈190A \approx 190 region in a nucleus with Z>83Z > 83. The J(2){\cal J}^{(2)} of the new band is very similar to those of the yrast SD bands in 194^{194}Hg and 196^{196}Pb. The intensity profile suggests that this band is populated through states close to where the SD band crosses the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys. Rev. C. (Rapid Communications
    • 

    corecore